Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FU Xiaoyan, LI Zhenguo, LI Xiangyu, YANG Meng, LIU Lianlian, XIA Ying, SUN Zhen, LI Zhiyuan. ANTIBIOTIC POLLUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF WATER BODIES AROUND LIVESTOCK AND POULTRY BREEDING IN DALIAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 164-169. doi: 10.13205/j.hjgc.202304023
Citation: ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010

FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE

doi: 10.13205/j.hjgc.202304010
  • Received Date: 2022-05-14
    Available Online: 2023-05-26
  • Publish Date: 2023-04-01
  • The crucial point of the industrial application of VOCs catalytic oxidation is to develop efficient and stable monolithic catalysts. Traditional monolithic catalysts were prepared by coating and impregnating the ceramic carrier, which led to uneven distribution of active components, low utilization rate, and even deactivation, thereby reducing the performance of monolithic catalysts. In this study, a MnO2 monolithic catalyst (MnO2/NF-IS) was prepared in situ by the redox reaction between nickel foam and KMnO4. The catalytic performance of the as-obtained catalysts for toluene oxidation was investigated. Besides, the catalysts were characterized by XRD, SEM, TEM, H2-TPR, O2-TPD, and XPS, and the degradation pathway of toluene oxidation was investigated. It has been shown that MnO2/NF-IS had a special structure of porous nanosheet arrays and abundant oxygen vacancies, delivering the best performance for toluene oxidation (T90=248 ℃), which was better than that of powder MnO2 (T90=271 ℃) as well as the integrated MnO2/NF-WC (T90=293 ℃) prepared by the coating method. Therefore, a new strategy for the synthesis of MnO2 monolithic catalysts was provided in this study.
  • [1]
    GUO Y L, WEN M C, LI G Y, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Applied Catalysis B: Environmental, 2021, 281: 119447.
    [2]
    POSCHL U, SHIRAIWA M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene[J]. Chem Rev, 2015, 115(10): 4440-4475.
    [3]
    KONG J J, YANG T, RUI Z B, et al. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives[J]. Catalysis Today, 2019, 327: 47-63.
    [4]
    SŁOMIŃSKA M, KRÓL S, NAMIEŚNIK J. Removal of BTEX compounds from waste gases; destruction and recovery techniques[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(14): 1417-1445.
    [5]
    王小强, 杨宁, 徐力, 等. 铁锰基整体式催化剂催化燃烧甲苯和氯苯的性能[J]. 中国环境科学, 2022: 1-12.
    [6]
    ZHANG Q, WU D F. Mechanical stability of monolithic catalysts: the influence mechanism of primer on the washcoat adhesion to the metallic substrates[J]. ChemistrySelect, 2019, 4(11): 3214-3221.
    [7]
    LU X X, TANG W X, LI M L, et al. Mass transport in nanoarray monolithic catalysts: an experimental-theory study[J]. Chemical Engineering Journal, 2021, 405: 126906.
    [8]
    JIANG X D, XU W C, LAI S F, et al. Integral structured Co-Mn composite oxides grown on interconnected Ni foam for catalytic toluene oxidation[J]. RSC Advances, 2019, 9(12): 6533-6541.
    [9]
    ZHANG Q, MO S P, CHEN B X, et al. Hierarchical Co3O4 nanostructures in-situ grown on 3D nickel foam towards toluene oxidation[J]. Molecular Catalysis, 2018, 454: 12-20.
    [10]
    ZHANG X D, LV X T, BI F K, et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors[J]. Molecular Catalysis, 2020, 482: 110701.
    [11]
    YANG W H, SU Z A, XU Z H, et al. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Applied Catalysis B: Environmental, 2020, 260: 118150.
    [12]
    YANG W H, PENG Y, WANG Y, et al. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces[J]. Applied Catalysis B: Environmental, 2020, 278: 119279.
    [13]
    MO S P, ZHANG Q, REN Q M, et al. Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement[J]. J Hazard Mater, 2019, 364: 571-580.
    [14]
    WANG J, YOSHIDA A, WANG P F, et al. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method[J]. Applied Catalysis B: Environmental, 2020, 271: 118941.
    [15]
    吴宇昊, 张健, 龙超. MCM-41孔径对负载MnO<em>x催化氧化甲苯性能的影响[J]. 环境科学学报, 2022, 42(3): 1-10.

    ZHAO Q, ZHENG Y F, SONG C F, et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnO<em>x on Ni foam for VOC oxidation[J]. Applied Catalysis B: Environmental, 2020, 265: 118552.[16] ZHAO Y X, CHANG C, TENG F, et al. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting[J]. Advanced Energy Materials, 2017, 7(18): 1700005. [17] MO S P, ZHANG Q, LI J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2020, 264: 110701. [18] ZHENG Y F, LIU Q L, SHAN C P, et al. Defective ultrafine MnO<em>x nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds[J]. Environ Sci Technol, 2021, 55(8): 5403-5411. [19] SU Z, YANG W H, WANG C Z, et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environ Sci Technol, 2020, 54(19): 12684-12692. [20] LIAO H Y, GUO X Z, HOU Y, et al. Construction of defect-rich Ni-Fe-doped K0.23 MnO2 cubic nanoflowers via etching prussian blue analogue for efficient overall water splitting[J]. Small, 2020, 16(10): 1905223. [21] ZHAO Y F, ZHANG J Q, WU W J, et al. Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution[J]. Nano Energy, 2018, 54: 129-137. [22] SONG L L, DUAN Y P, HE G H, et al. Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15362-15370. [23]
  • Relative Articles

  • Cited by

    Periodical cited type(7)

    1. 谢作杰,董鹏宇,尹苗,邓永涛,陈希文. 微生态制剂的作用机制及其在家禽健康养殖中的应用. 黑龙江畜牧兽医. 2025(01): 15-19 .
    2. 赵悦,王春霞,赵梅云. 生态养殖模式在畜禽养殖中的应用. 现代农村科技. 2025(02): 77-78 .
    3. 董堃,唐宇坤,周欣雨,黄浩宇,王敦球,李海翔. 桂林市青狮潭水库沉积物抗生素污染特征及风险评估. 农业环境科学学报. 2024(01): 143-151 .
    4. 陈进,王亚娟,陶红,张锐. 规模化养殖园区土壤中抗生素污染特征和生态风险评价. 环境科学. 2024(07): 4302-4311 .
    5. 徐春燕,凌海波,张姝,向罗京,李苇苇,明德,易川. 湖北省四湖流域典型抗生素分布特征及生态风险评估. 安全与环境工程. 2023(05): 213-221 .
    6. 张亚萍,拓田田,李金金. 抗生素在多介质中污染现状研究进展. 山西化工. 2023(09): 50-52 .
    7. 张文斌,赵晶,张秀,王俭,刘灿,杨海蓉. 重庆市水环境中抗生素的污染特征及其风险评价. 生态毒理学报. 2023(06): 314-324 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.6 %FULLTEXT: 14.6 %META: 82.6 %META: 82.6 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.7 %其他: 0.7 %China: 3.1 %China: 3.1 %上海: 3.8 %上海: 3.8 %临汾: 0.3 %临汾: 0.3 %云浮: 0.3 %云浮: 0.3 %保定: 0.3 %保定: 0.3 %北京: 0.7 %北京: 0.7 %十堰: 0.3 %十堰: 0.3 %南京: 2.8 %南京: 2.8 %南宁: 2.1 %南宁: 2.1 %南昌: 0.3 %南昌: 0.3 %台州: 2.1 %台州: 2.1 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.7 %哈尔滨: 0.7 %大同: 0.3 %大同: 0.3 %大连: 4.2 %大连: 4.2 %天津: 1.4 %天津: 1.4 %常德: 1.0 %常德: 1.0 %广州: 0.3 %广州: 0.3 %张家口: 5.9 %张家口: 5.9 %惠州: 1.4 %惠州: 1.4 %成都: 0.3 %成都: 0.3 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 2.8 %杭州: 2.8 %格兰特县: 1.0 %格兰特县: 1.0 %武汉: 2.1 %武汉: 2.1 %沈阳: 1.0 %沈阳: 1.0 %温州: 0.7 %温州: 0.7 %甘南: 0.3 %甘南: 0.3 %芒廷维尤: 8.3 %芒廷维尤: 8.3 %芝加哥: 6.9 %芝加哥: 6.9 %苏州: 2.4 %苏州: 2.4 %衡阳: 0.3 %衡阳: 0.3 %西宁: 19.1 %西宁: 19.1 %西安: 0.7 %西安: 0.7 %贵阳: 1.4 %贵阳: 1.4 %运城: 2.4 %运城: 2.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.7 %郑州: 0.7 %重庆: 0.7 %重庆: 0.7 %金华: 0.3 %金华: 0.3 %银川: 0.7 %银川: 0.7 %青岛: 0.3 %青岛: 0.3 %其他其他China上海临汾云浮保定北京十堰南京南宁南昌台州合肥哈尔滨大同大连天津常德广州张家口惠州成都昆明晋城朝阳杭州格兰特县武汉沈阳温州甘南芒廷维尤芝加哥苏州衡阳西宁西安贵阳运城遵义邯郸郑州重庆金华银川青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (189) PDF downloads(13) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return