Citation: | KANG Hua, LI Hongyan, LONG Beisheng, PENG Jiaxi, JIAO Yang. PARAMETERS AND PERFORMANCE OF AN IMPROVED A2NSBR PROCESS ON PHOSPHORUS AND NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 123-130. doi: 10.13205/j.hjgc.202304017 |
[1] |
杜林竹, 艾胜书, 刘轩彤, 等. 城市污水处理新型生物脱氮除磷技术研究进展[J].净水技术, 2021, 40(11): 28-34.
|
[2] |
PREISNER M, NEVEROVA E, KOWALEWSKI Z. Analysis of eutrophication potential of municipal wastewater[J]. Water Science & Technology, 2020, 81(9):1994-2003.
|
[3] |
曲红, 石雪颖, 聂泽兵, 等. 不同C/P下AOA-SBR工艺磷形态转化规律及污泥特性[J]. 中国环境科学, 2022, 42(1): 92-101.
|
[4] |
卢瑞朋, 徐文江, 李安峰, 等. 强化反硝化除磷的新型多级缺氧-好氧工艺[J].中国环境科学, 2022, 42(4):1706-1713.
|
[5] |
ZHAO W H, PENG Y Z, WANG M X, et al. Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater[J]. Bioresource Technology,2019,294:122161.
|
[6] |
ZHANG J B, SHAO Y T, WANG H C, et al. Current operation state of wastewater treatment plants in urban China[J]. Environmental Research, 2021, 195:110843.
|
[7] |
韩亚琳, 王福浩, 王群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 39(1): 51-57.
|
[8] |
卞晓峥, 闫阁, 黄健平, 等. 双污泥系统反硝化除磷新工艺研究进展[J]. 水处理技术, 2021, 47(7): 19-24.
|
[9] |
李微, 刘静, 孟海停, 等. A2/N-SBR工艺短程反硝化除磷脱氮研究[J]. 环境工程, 2016, 34(8): 62-67.
|
[10] |
KUBA T, VANLOOSDRECHT M, HEIJNEN J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996, 30(7): 1702-1710.
|
[11] |
LI H Y, BAI L,LONG B S,et al. Comparative analysis of phosphorus removal characteristics between two-stage SBR and single-stage SBR process for phosphorus and nitrogen removal[J]. Desalination and Water Treatment, 2020, 181: 197-203.
|
[12] |
王梅香, 赵伟华,王淑莹,等. A2N2 双污泥系统反硝化除磷工艺的启动与稳定[J]. 化工学报, 2016, 67(7): 2987-2997.
|
[13] |
史静, 吕锡武, 许正文, 等. A2N-IC-SBR改进工艺强化脱氮除磷特性[J]. 化工学报, 2014, 65(10): 4094-4100.
|
[14] |
王梅香, 赵伟华, 王淑莹, 等. A2N2系统反硝化除磷性能的优化及稳定运行[J]. 中国环境科学, 2016, 36(11): 3311-3320.
|
[15] |
刘莹, 彭永臻, 王淑莹. A2N工艺的固有弊端分析及其对策研究[J]. 工业用水与废水, 2010, 41(6): 1-5.
|
[16] |
张淼. A2O生物接触氧化工艺反硝化除磷性能优化及机理研究[D]. 北京: 北京工业大学, 2016.
|
[17] |
黄健平, 闫阁, 卞晓峥, 等. 反硝化除磷污水处理工艺影响因素分析[J]. 华北水利水电大学学报(自然科学版), 2021, 42(6): 100-106.
|
[18] |
赵伟华, 王梅香, 李健伟, 等. A2O工艺和A2O+BCO工艺的脱氮除磷性能比较[J]. 中国环境科学, 2019, 39(3):100-105.
|
[19] |
张建华, 王淑莹, 张淼, 等. 不同反应时间内碳源转化对反硝化除磷的影响[J]. 中国环境科学. 2017, 37(3): 989-997.
|
[20] |
LV X M, SHAO M F, LI C L, et al. Operation performance and microbial community dynamics of phosphorus removal sludge with different electron acceptors[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(7):1099-1108.
|
[21] |
李勇智, 彭永臻, 王淑滢. 强化生物除磷体系中的反硝化除磷[J]. 中国环境科学, 2003, 23(5): 543-546.
|
[22] |
王亚宜, 彭永臻, 王淑莹, 等. 碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J]. 环境科学, 2004, 25(4):54-58.
|
[23] |
张为堂, 薛晓飞, 庞洪涛, 等. 碳氮比对AAO-BAF工艺运行性能的影响[J]. 化工学报, 2015, 66(5): 1925-1930.
|
[24] |
程鹏, 卞晓峥, 宋博宇, 等. 不同电子受体反硝化除磷的研究进展[J]. 科技创新与应用, 2022,12(6): 130-133
,136.
|
[25] |
高景峰. SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D]. 哈尔滨:哈尔滨工业大学, 2001.
|
[26] |
苗志加, 李宁, 高会杰, 等. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O 积累的影响因素[J]. 环境工程学报, 2016, 10(6): 2807-2812.
|
[27] |
鞠洪海. 不同电子受体驯化聚糖菌反硝化过程及 N2O释放特性[J]. 环境工程, 2020, 38(9): 113-118.
|
[28] |
吕永涛,张瑶,闫建平, 等. 电子受体及投加方式对反硝化除磷及N2O释放影响[J]. 水处理技术, 2017, 43(12): 38-42.
|
[29] |
YANG Q, PENG Y Z, LIU X H, et al. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities[J]. Environmental Science & Technology, 2017, 41(23):8159-8164.
|
[30] |
ZHAO W H, ZHANG Y, LV D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302: 296-304.
|
[31] |
穆剑楠. 基于DO与ORP短程硝化反硝化SBR实时控制研究[D]. 郑州:郑州大学, 2019.
|
[32] |
葛士建, 王淑莹, 杨岸明, 等. 反硝化过程中亚硝酸盐积累特性分析[J]. 土木建筑与环境工程, 2011, 33(1): 140-146.
|
[33] |
龙北生, 刘红波,肖国拾, 等. 两级 SBR工艺去除磷、氮及有机物效能分析[J]. 环境科学, 2009, 30(9): 2609-2614.
|