With the frequent occurrence of extreme weather and the rapid implementation of urbanization construction, urban rail transit flooding due to heavy rainfall brings great safety risks to the normal operation of rail transit. The construction of sponge city based on rainwater management plays an important role in solving the vehicle base runoff problem. This paper constructs the LID optimization arrangement algorithm based on NSGA-Ⅱ with total runoff control rate, total node overload time and total LID engineering cost as the objective functions. The combination scheme and scale of LID measures are optimized from the model perspective to avoid the problem of incomplete manual enumeration in the scenario scheme. Finally, a train base in Shanghai is used as the study area to explore the regional LID deployment scheme. The simulation results show that the coupled SWMM and optimization algorithm can generate a series of LID deployment schemes that take into account the above three objectives, effectively reduce the total amount of regional stormwater runoff and flood flow, improve the regional drainage capacity, and provide technical support for the design of LID schemes for the vehicle base.
JORGE GIRONÁS, ROESNER L A, ROSSMAN L A, et al. A new applications manual for the Storm Water Management Model (SWMM)[J]. Environmental Modelling & Software, 2010, 25(6):813-814.
[11]
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.