Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
Citation: LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021

GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK

doi: 10.13205/j.hjgc.202304021
  • Received Date: 2022-04-21
    Available Online: 2023-05-26
  • Publish Date: 2023-04-01
  • Water demand forecasting is the basis of the optimization of water networks, and its accuracy is important for the following work. Graph neural network, an emerging architect, takes advantage of the topological information to enhance the learning results, which means the topology of the water network can an input feature of the graph-based neural network model and lift the prediction accuracy. This work tried to utilize Graph Wavenet model in water demand forecasting and make use of the topological feature of the water network. After utilizing real-world history data in the training process, the average 5 min prediction MAPE error result was 1.28%. Besides, this experiment showed that Graph Wavenet raised the prediction accuracy, compared to WaveNet without graph convolution operation, confirming the contribution of the graph convolution mechanism. This work also talked about future applications of GNN on water distribution networks.
  • [1]
    HOWE C W, LINAWEAVER F P JR. The impact of price on residential water demand and its relation to system design and price structure[J]. Water Resources Research, 1967, 3(1): 13-32.
    [2]
    JAIN A, VARSHNEY A K, JOSHI U C. Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks[J]. Water Resources Management, 2001, 15(5): 299-321.
    [3]
    ADAMOWSKI J, FUNG C H, PRASHER S O, et al. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada[J]. Water Resources Research, 2012, 48(1): W01528.
    [4]
    BRAUN M, BERNARD T, PILLER O, et al. 24-hours demand forecasting based on SARIMA and support vector machines[J]. Procedia Engineering, 2014, 89(1): 926-933.
    [5]
    XU Y B, ZHANG J, LONG Z Q, et al. Hourly urban water demand forecasting using the continuous deep belief echo state network[J]. Water, 2019, 11(2): 351-362.
    [6]
    GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-scale sentiment classification: a deep learning approach[C]//ICML, 2011.
    [7]
    GOUWS S. Deep unsupervised feature learning for natural language processing[C]//Proceedings of the NAACL HLT 2012 Student Research Workshop, 2012: 48-53.
    [8]
    SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117.
    [9]
    SUN Y. Deep learning face representation by joint identification-verification[D]. Hong Kong: The Chinese University of Hong Kong, 2015.
    [10]
    GUO G C, LIU S M, WU Y P, et al. Short-term water demand forecast based on deep learning method[J]. Journal of Water Resources Planning and Management, 2018, 144(12): 04018076.
    [11]
    ABDELNASSER A, RASHAD M, HUSSEIN S. A two-layer water demand prediction system in urban areas based on micro-services and LSTM neural networks[J]. IEEE Access, 2020, 8: 147647-147661.
    [12]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
    [13]
    ZHOU X, LIU S M, XU W R, et al. Bridging hydraulics and graph signal processing: a new perspective to estimate water distribution network pressures[J]. Water Research, 2022, 217: 118416.
    [14]
    FU M L, RONG K Z, HUANG Y Y, et al. Graph neural network for integrated water network partitioning and dynamic district metered areas. Scientific Reports, 2022, 12(1): 19466.
    [15]
    VERMAAK J, BOTHA E C. Recurrent neural networks for short-term load forecasting[J]. IEEE Transactions on Power System, 1998, 13(1), 126-132.
    [16]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
    [17]
    OORD A, DIELEMAN S, ZEN H, et al. Wavenet: A generative model for raw audio[C]//Proceedings of 9th ISCA Workshop on Speech Synthesis Workshop, Sunnyvale, USA, 2016.
    [18]
    WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019.
  • Relative Articles

    [1]TONG Jingzhe, NI Changjian, MI Jiayuan, JIANG Mengjiao, ZHANG Ying, SHI Qiaoyu. A BP NEURAL NETWORK MODEL OF AEROSOL SCATTERING HYGROSCOPIC GROWTH FACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 131-137,165. doi: 10.13205/j.hjgc.202307018
    [2]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [3]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [4]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [5]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [6]XIE Wei, XU Jiao, LIN Zhiguo, YAN Di, ZHANG Yinglei. RESEARCH ON REAL-TIME SOURCE APPORTIONMENT METHOD OF VOCs BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 231-238. doi: 10.13205/j.hjgc.202212031
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [9]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(1)

    1. 鲍立万,傅泉,徐建华,江君福,张国晟,王艳. 基于机器学习的城市短期需水量预测研究. 浙江水利科技. 2024(05): 94-99+105 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.6 %FULLTEXT: 9.6 %META: 86.7 %META: 86.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.9 %其他: 15.9 %其他: 1.1 %其他: 1.1 %China: 0.7 %China: 0.7 %Howard: 0.2 %Howard: 0.2 %上海: 8.3 %上海: 8.3 %东莞: 4.3 %东莞: 4.3 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.7 %乌鲁木齐: 0.7 %亚特兰大: 0.2 %亚特兰大: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 1.3 %佛山: 1.3 %保定: 2.0 %保定: 2.0 %北京: 3.5 %北京: 3.5 %十堰: 0.2 %十堰: 0.2 %南京: 1.1 %南京: 1.1 %台州: 1.5 %台州: 1.5 %合肥: 0.7 %合肥: 0.7 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.7 %嘉兴: 0.7 %大同: 0.2 %大同: 0.2 %大连: 1.7 %大连: 1.7 %天津: 2.2 %天津: 2.2 %太原: 0.2 %太原: 0.2 %安大略: 0.2 %安大略: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %常德: 0.7 %常德: 0.7 %广州: 2.4 %广州: 2.4 %张家口: 0.2 %张家口: 0.2 %意法半: 0.2 %意法半: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.3 %杭州: 3.3 %杰克逊维尔: 0.2 %杰克逊维尔: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.1 %武汉: 1.1 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.2 %泰安: 0.2 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.7 %济南: 0.7 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 2.6 %漯河: 2.6 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %绥化: 0.4 %绥化: 0.4 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.1 %芝加哥: 1.1 %衡水: 2.2 %衡水: 2.2 %衡阳: 0.2 %衡阳: 0.2 %西宁: 14.6 %西宁: 14.6 %西安: 0.2 %西安: 0.2 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.7 %鄂州: 0.7 %重庆: 1.1 %重庆: 1.1 %金华: 0.2 %金华: 0.2 %长沙: 2.0 %长沙: 2.0 %青岛: 0.4 %青岛: 0.4 %其他其他ChinaHoward上海东莞临汾乌鲁木齐亚特兰大伦敦佛山保定北京十堰南京台州合肥呼和浩特和田哈尔滨嘉兴大同大连天津太原安大略宜春宣城密蘇里城常德广州张家口意法半成都扬州无锡昆明晋城朝阳杭州杰克逊维尔桂林武汉汕头沈阳泰安洛杉矶济南深圳温州湖州漯河濮阳焦作石家庄福州绥化芒廷维尤芝加哥衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (396) PDF downloads(17) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return