Citation: | CHEN Sisi, TANG Xingying, REN Pengwei, LIN Zitao, QIN Zu'an, ZHU Riguang, WANG Yinghui. RESEARCH PROGRESS ON APPLICATION OF CATALYSTS IN HYDROTHERMAL CARBONIZATION PROCESS OF BIOMASS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 195-204. doi: 10.13205/j.hjgc.202304027 |
[1] |
ZHOU X X, ZHAO J, CHEN M Z, et al. Influence of catalyst and solvent on the hydrothermal liquefaction of woody biomass[J]. Bioresource Technology, 2022, 346: 126354.
|
[2] |
阚玉娜,陈冰炜,翟胜丞,等.生物质水热碳化及其功能化应用研究进展[J].化工新型材料,2021, 49(12):43-49.
|
[3] |
WANG S R, DAI G X, YANG H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86.
|
[4] |
马隆龙,唐志华,汪丛伟,等.生物质能研究现状及未来发展策略[J].中国科学院院刊, 2019, 34(4):434-442.
|
[5] |
KANT BHATIA S, PALAI A K, KUMAR A, et al. Trends in renewable energy production employing biomass-based biochar[J]. Bioresource Technology, 2021, 340: 125644.
|
[6] |
PATRA B R, MUKHERJEE A, NANDA S, et al. Biochar production, activation, and adsorptive applications: a review[J]. Environmental Chemistry Letters, 2021, 19(3): 2237-2259.
|
[7] |
WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022.
|
[8] |
SEOW Y X, TAN Y H, MUBARAK N M, et al. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107017.
|
[9] |
ZHAO H Y, LU X A, WANG Y, et al. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization[J]. Journal of Materials Science, 2017, 52(18): 10787-10799.
|
[10] |
FANG J, ZHAN L, OK Y S, et al. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 15-21.
|
[11] |
RATHA S K, RENUKA N, ABUNAMA T, et al. Hydrothermal liquefaction of algal feedstocks: the effect of biomass characteristics and extraction solvents[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111973.
|
[12] |
OBEID F, VAN T C, GUO B F, et al. The fate of nitrogen and sulphur during co-liquefaction of algae and bagasse: experimental and multi-criterion decision analysis[J]. Biomass and Bioenergy, 2021, 151: 106119.
|
[13] |
GONZÁLEZ-ARIAS J, SÁNCHEZ M E, CARA-JIMÉNEZ J, et al. Hydrothermal carbonization of biomass and waste: a review[J]. Environmental Chemistry Letters, 2022, 20(1): 211-221.
|
[14] |
LACHOS-PEREZ D, CÉSAR TORRES-MAYANGA P, ABAIDE E R, et al. Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities[J]. Bioresource Technology, 2022, 343: 126084.
|
[15] |
TEKIN K, KARAGÖZ S, BEKTAŞ S. A review of hydrothermal biomass processing[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 673-687.
|
[16] |
张晓娟.典型废弃生物质水热碳化提质制备多功能生物炭研究[D].大连:大连理工大学, 2019.
|
[17] |
黄维,范同祥.水热碳化法的研究进展[J].材料导报, 2014, 28(增刊1):131-135.
|
[18] |
周之栋,卜晓莉,吴永波,等.生物炭对土壤微生物特性影响的研究进展[J].南京林业大学学报(自然科学版),2016, 40(6):1-8.
|
[19] |
OK Y S, CHANG S X, GAO B, et al. SMART biochar technology: a shifting paradigm towards advanced materials and healthcare research[J]. Environmental Technology & Innovation, 2015, 4: 206-209.
|
[20] |
WU Y, CAO J P, ZHAO X Y, et al. High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2[J]. Applied Surface Science, 2020, 508: 144536.
|
[21] |
OZBAY N, YARGIC A S, YARBAY SAHIN R Z. Tailoring Cu/Al2O3 catalysts for the catalytic pyrolysis of tomato waste[J]. Journal of the Energy Institute, 2018, 91(3): 424-433.
|
[22] |
SUN S C, HUANG X F, LIN J H, et al. Study on the effects of catalysts on the immobilization efficiency and mechanism of heavy metals during the microwave pyrolysis of sludge[J]. Waste Management, 2018, 77: 131-139.
|
[23] |
ZHAO B J, HU Y L, QI L Y, et al. Promotion effects of metallic iron on hydrothermal liquefaction of cornstalk in ethanol-water mixed solvents for the production of biocrude oil[J]. Fuel, 2021, 285: 119150.
|
[24] |
DING Y J, SHAN B L, CAO X J, et al. Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose[J]. Journal of Cleaner Production, 2021, 288: 125586.
|
[25] |
LYNAM J G, TOUFIQ REZA M, VASQUEZ V R, et al. Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass[J]. Fuel, 2012, 99: 271-273.
|
[26] |
LYNAM J G, CORONELLA C J, YAN W, et al. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(10): 6192-6199.
|
[27] |
HASAN R O, ERCAN B, ACIKKAPI A N, et al. Effects of metal chlorides on the hydrothermal carbonization of grape seeds[J]. Energy & Fuels, 2021, 35(10): 8834-8843.
|
[28] |
QI R Z, XU Z, ZHOU Y, et al. Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: upgrading the fuel quality and combustion characteristics[J]. Energy, 2021, 214: 118926.
|
[29] |
XU Z X, SHAN Y Q, ZHANG Z, et al. Hydrothermal carbonization of sewage sludge: effect of inorganic salts on hydrochar’s physicochemical properties[J]. Green Chemistry, 2020, 22(2): 7010-7022.
|
[30] |
MA X Q, SHAN Y Q, DUAN P G, et al. Fe(NO3)3 assisted hydrothermal carbonization of sewage sludge: focusing on characteristics of hydrochar and aqueous phase[J]. Molecular Catalysis, 2021, 514: 111823.
|
[31] |
XU X W, JIANG E C. Treatment of urban sludge by hydrothermal carbonization[J]. Bioresource Technology, 2017, 238: 182-187.
|
[32] |
KWON E E, LEE T, OK Y S, et al. Effects of calcium carbonate on pyrolysis of sewage sludge[J]. Energy, 2018, 153: 726-731.
|
[33] |
HAN L, CHONG F, GUO Z, et al. Research progress of sludge pyrolysis catalysts[J]. IOP Conference Series. Earth and Environmental Science, 2021, 651(4): 42007.
|
[34] |
WEIHRICH S, XING X J. Screening of synergetic catalytic effects of salts dominant in sewage sludge on corn stalk derived hydro and biochar[J]. BioEnergy Research, 2021, 14(3): 978-990.
|
[35] |
HEIDARI M, DUTTA A, ACHARYA B, et al. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion[J]. Journal of the Energy Institute, 2019, 92(6): 1779-1799.
|
[36] |
HAMMERTON J M, ROSS A B. Inorganic salt catalysed hydrothermal carbonisation (HTC) of cellulose[J]. Catalysts, 2022, 12(5): 492.
|
[37] |
LI Y, LI Q, CAI Y H, et al. An efficient polymer acceptorvia a random polymerization strategy enables all-polymer solar cells with efficiency exceeding 17%[J]. Energy & Environmental Science, 2022.
|
[38] |
SZTANCS G, KOVACS A, TOTH A J, et al. Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing[J]. Fuel, 2021, 300: 120927.
|
[39] |
MA R, FAKUDZE S, SHANG Q Q, et al. Catalytic hydrothermal carbonization of pomelo peel for enhanced combustibility of coal/hydrochar blends and reduced CO2 emission[J]. Fuel, 2021, 304: 121422.
|
[40] |
SUSANTI R F, ARIE A A, KRISTIANTO H, et al. Activated carbon from citric acid catalyzed hydrothermal carbonization and chemical activation of salacca peel as potential electrode for lithium ion capacitor’s cathode[J]. Ionics, 2019, 25(8): 3915-3925.
|
[41] |
LEI Q, KANNAN S, RAGHAVAN V. Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste[J]. Waste Management, 2021, 126: 106-118.
|
[42] |
MUMME J, ECKERVOGT L, PIELERT J, et al. Hydrothermal carbonization of anaerobically digested maize silage[J]. Bioresource Technology, 2011, 102(19): 9255-9260.
|
[43] |
HUANG Y, SHEN D, WANG Z. Preparation of citric acid-sewage sludge hydrochar and its adsorption performance for Pb(Ⅱ) in aqueous solution[J]. Polymers, 2022, 14(5): 968.
|
[44] |
LI X, LI M, BIAN J, et al. Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products[J]. RSC Advances, 2015, 5(94): 77147-77153.
|
[45] |
WANG T F, ZHAI Y B, ZHU Y, et al. Acetic acid and sodium hydroxide-aided hydrothermal carbonization of woody biomass for enhanced pelletization and fuel properties[J]. Energy & Fuels, 2017, 31(11): 12200-12208.
|
[46] |
ZHANG S, SHENG K C, YAN W, et al. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization[J]. Chemosphere, 2021, 263: 128093.
|
[47] |
LONGPRANG T, JARUWAT D, UDOMSAP P, et al. Influence of acid additive on nanoporous carbon materials via HTC for catalyst support[J]. Materials Today: Proceedings, 2020, 23: 762-766.
|
[48] |
ZHU Q C, LIU X J, HAO T X, et al. Modeling soil acidification in typical Chinese cropping systems[J]. Science of the Total Environment, 2018, 613/614: 1339-1348.
|
[49] |
ZHANG M, ALVES R J E, ZHANG D, et al. Time-dependent shifts in populations and activity of bacterial and archaeal ammonia oxidizers in response to liming in acidic soils[J]. Soil Biology and Biochemistry, 2017, 112: 77-89.
|
[50] |
HUANG Y B, FU Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry, 2013, 15(5): 1095.
|
[51] |
LANG Q Q, ZHANG B, LIU Z G, et al. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization[J]. Journal of Environmental Management, 2019, 233: 440-446.
|
[52] |
KRÓL M. Natural vs. synthetic zeolites[J]. Crystals, 2020, 10(7): 622.
|
[53] |
MUMME J, TITIRICI M, PFEIFFER A, et al. Hydrothermal carbonization of digestate in the presence of zeolite: process efficiency and composite properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2967-2974.
|
[54] |
BOONYAKARN T, WATANIYAKUL P, BOONNOUN P, et al. Enhanced levulinic acid production from cellulose by combined brΦnsted hydrothermal carbon and lewis acid catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2697-2703.
|
[55] |
EVCIL T, SIMSIR H, UCAR S, et al. Hydrothermal carbonization of lignocellulosic biomass and effects of combined Lewis and BrΦnsted acid catalysts[J]. Fuel, 2020, 279: 118458.
|
[56] |
GU W L, YU Z S, FANG S W, et al. Effects of hydrothermal carbonization on catalytic fast pyrolysis of tobacco stems[J]. Biomass Conversion and Biorefinery, 2020, 10(4): 1221-1236.
|
[57] |
WANG X B, SHEN Y, LIU X C, et al. Fly ash and H2O2 assisted hydrothermal carbonization for improving the nitrogen and sulfur removal from sewage sludge[J]. Chemosphere, 2022, 290: 133209.
|