Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Shuhan, WANG Xiaoling, LIN Haiying, SUN Tao, YANG Wei. TEMPORAL VARIATION TRAITS AND ENVIRONMENTAL FACTORS OF COMMUNITY STRUCTURE OF EPIPHYTES ON CERATOPHYLLUM DEMERSUM IN THE BAIYANGDIAN LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 22-29. doi: 10.13205/j.hjgc.202305004
Citation: LI Shuhan, WANG Xiaoling, LIN Haiying, SUN Tao, YANG Wei. TEMPORAL VARIATION TRAITS AND ENVIRONMENTAL FACTORS OF COMMUNITY STRUCTURE OF EPIPHYTES ON CERATOPHYLLUM DEMERSUM IN THE BAIYANGDIAN LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 22-29. doi: 10.13205/j.hjgc.202305004

TEMPORAL VARIATION TRAITS AND ENVIRONMENTAL FACTORS OF COMMUNITY STRUCTURE OF EPIPHYTES ON CERATOPHYLLUM DEMERSUM IN THE BAIYANGDIAN LAKE

doi: 10.13205/j.hjgc.202305004
  • Received Date: 2022-05-08
  • Epiphytes on the surface of submerged plants participate in the biogeochemical cycle of the ecosystem and respond quickly to the changes of water environment. Epiphytes blooms will limit the photosynthesis of submerged plants and further lead to their degradation. To clarify the traits of epiphytes community structure and its correlation with environmental factors, this study investigated the epiphyte community in the dormancy and growth period of Ceratophyllum demersum, the dominant submerged plant in the Baiyangdian Lake, Xiong’an New Area, and monitored physical and chemical environmental factors of the water column. Furthermore, key environmental factors for each phylum of epiphytes were identified. Results showed that the diversity and species richness of Bacillariophyta in the Baiyangdian Lake were highest both in the growing and dormancy periods. The epiphytes attachment sort was Bacillariophyta>Chlorophyta>Cyanobacteria>Chrysophyta. The ratio of N/P had a significant effect on all phylum of epiphytes. Cocconeis, Synedra and Fragilaria were annual dominant species (genera), and their ecological amplitude of N/P ratio was relatively wider. Cyclotella, Melosira, Eunotia, Navicula and Gomphonema became the dominant species only in the dormancy period of high N/P ratio. It demonstrated that they were more suitable for living in an environment of high N/P ratio, and more vulnerable to a nitrogen-limited environment, i.e., the growing period with low N/P ratio. Dissolved oxygen and total phosphorus significantly affected the abundance of Cyanophyta during growth and dormancy periods, respectively. A positive feedback loop existed between N/P ratio and Cyanophyta, and the colonization of Chlorophyta was significantly affected by N/P ratio. To prevent the degradation of submerged plants caused by epiphytes bloom, controlling nitrogen input and increasing water supply were suggested to inhibit the reproduction and colonization of Chlorophyta and Cyanophyta during the growing period of submerged plants in Baiyangdian Lake. By contrast, during the dormancy period, controlling phosphorus input and decreasing water supply is necessary to prevent Bacillariophyta bloom and protect submerged plant growth.
  • [1]
    SAND-JENSEN K, REVSBECH N P. Photosynthesis and light adaptation in epiphyte-macrophyte associations measured by oxygen microelectrodes[J]. Limnology and Oceanography, 1987, 32(2): 452-457.
    [2]
    董彬, 陆全平, 王国祥, 等. 菹草(Potamogeton crispus)附着物对水体氮、磷负荷的响应[J]. 湖泊科学, 2013, 25(3): 359-365.
    [3]
    MIN F L, ZUO J C, ZHANG Y, et al. The biomass and physiological responses of Vallisneria natans (lour.) hara to epiphytic algae and different nitrate-N concentrations in the water column[J]. Water, 2017, 9(12):863.
    [4]
    贾惠雁, 陈永华, 陈明利, 等. 5种水生植物对铜绿微囊藻的抑制与生理影响研究[J]. 农业现代化研究, 2019, 40(6): 1056-1064.
    [5]
    张晶, 刘存歧. 金鱼藻附生生物初级生产力的研究[J]. 环境科学与技术, 2015, 38(9): 24-29.
    [6]
    宋玉芝, 杨旻, 杨美玖, 等. 氨氮浓度对附植藻类在菹草上定植及演替的影响[J]. 农业环境科学学报, 2014, 33(2): 375-382.
    [7]
    RODUSKY A J, STEINMAN A D, EAST T L, et al. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, U.S.A.[J]. Hydrobiologia, 2001, 448(1/2/3): 27-39.
    [8]
    DODDS W K. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems[J]. Journal of Phycology, 2003, 39(5): 840-849.
    [9]
    DANILOV R A, EKELUND N G A. The use of epiphyton and epilithon data as a base for calculating ecological indices in monitoring of eutrophication in lakes in central Sweden[J]. Science of the Total Environment, 2000, 248(1): 63-70.
    [10]
    HAN Z, CUI B S. Performance of macrophyte indicators to eutrophication pressure in ponds[J]. Ecological Engineering, 2016, 8-19.
    [11]
    LI S H, SUN T, YANG W, et al. Interspecific relationships between submerged and emergent aquatic plants along a nitrogen gradient in a mesocosm experiment[J]. Ecological Indicators, 2021, 133:108360.
    [12]
    马牧源, 崔丽娟, 张曼胤, 等. 白洋淀附生藻类的初级生产力及其与水质的关系[J]. 生态学报, 2018, 38(2): 443-456.
    [13]
    张晶. 沉水植物附生藻类对不同营养盐浓度的响应[D]. 保定:河北大学, 2014.
    [14]
    方慷. 白洋淀三大典型水体附生藻类群落结构研究[D]. 保定:河北大学, 2014.
    [15]
    李建, 尹炜, 贾海燕, 等. 汉江中下游硅藻水华研究进展与展望[J]. 水生态学杂志, 2020, 41(5): 136-144.
    [16]
    周卢茜, 裘钱玲琳, 唐剑锋, 等. 城市湖泊春季绿藻水华特征及其影响因素:以宁波月湖为例[J]. 湖泊科学, 2019, 31(4): 1023-1034.
    [17]
    侯秀丽, 苑春刚, 李学平, 等. 滇池氮磷浓度变化对蓝、绿、硅藻年际变化的影响[J]. 水生态学杂志, 2018, 39(1): 16-22.
    [18]
    马健荣, 邓建明, 秦伯强, 等. 湖泊蓝藻水华发生机理研究进展[J]. 生态学报, 2013, 33(10): 3020-3030.
    [19]
    王婷婷, 崔保山, 刘佩佩, 等. 白洋淀漂浮植物对挺水植物和沉水植物分布的影响[J]. 湿地科学, 2013, 11(2): 266-270.
    [20]
    ZHANG L, LIU B X, GE F J, et al. Interspecific competition for nutrients between submerged macrophytes (Vallisneria natans, Ceratophyllum demersum) and filamentous green algae (Cladophora oligoclona) in a co-culture system[J]. Polish Journal of Environmental Studies, 2019, 28(3): 1483-1494.
    [21]
    STIERS I, NJAMBUYA J, TRIEST L. Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging[J]. Aquatic Botany, 2011, 95(2): 161-166.
    [22]
    陈纯, 李思嘉, 胡韧, 等. 四种浮游植物生物量计算方法的比较分析[J]. 湖泊科学, 2013, 25(6): 927-935.
    [23]
    SHANNON C E, WEAVER W. The mathematical theory of communication[M]. University of Illinois Press, 1949.
    [24]
    MARGALEF R. Diversidad de especies en las comunidades naturales[J]. Publicaciones del Instituto de Biologia Aplicada, 1951, 6(1): 59-72.
    [25]
    苏胜齐, 沈盎绿, 姚维志. 菹草着生藻类的群落结构与数量特征初步研究[J]. 西南农业大学学报, 2002, 24(3): 255-258.
    [26]
    ÖTERLER B. Community structure, temporal and spatial changes of epiphytic algae on three different submerged macrophytes in a shallow lake[J]. Polish Journal of Environmental Studies, 2017, 26(5): 2147-2158.
    [27]
    TOPOROWSKA M, RECHULICZ J, ADAMCZUK M, et al. The role of abiotic and biotic environmental factors in shaping epiphyton on common reed in shallow, hydrologically transformed, temperate lakes[J]. Knowledge & Management of Aquatic Ecosystems, 2018, 419:18.
    [28]
    TOPOROWSKA M, PAWLIK-SKOWRON'SKA B, WOJTAL A. Epiphytic algae on Stratiotes aloides L., Potamogeton lucens L., Ceratophyllum demersum L. and Chara spp. in a macrophyte-dominated lake[J]. Oceanological and Hydrobiological Studies, 2008, 37(2): 51-63.
    [29]
    宋旭, 林陶, 夏品华, 等. 沉水植物附植生物膜藻类组成及重金属累积特征[J]. 湖泊科学, 2019, 31(5): 1268-1278.
    [30]
    刘凯辉, 张松贺, 吕小央, 等. 南京花神湖3种沉水植物表面附着微生物群落特征[J]. 湖泊科学, 2015, 27(1): 103-112.
    [31]
    乔金亮. 华北河湖生态补水超预期[N]. 经济日报, 2020-12-3.
    [32]
    KALFF J. 湖沼学: 内陆水生态系统[M]. 古滨河, 刘正文, 李宽意等译. 北京: 高等教育出版社, 2011.
    [33]
    KIEDRZYNSKA E, WAGNER I, ZALEWSKI M. Quantification of phosphorus retention efficiency by floodplain vegetation and a management strategy for a eutrophic reservoir restoration[J]. Ecological Engineering, 2008, 33(1): 15-25.
    [34]
    TIAN Z Q, ZHENG B H, LIU M Z, et al. Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China[J]. Journal of Environmental Sciences, 2009, 21(4): 440-446.
    [35]
    安强, 於阳, 黄源生, 等. 水动力条件对三峡库区次级支流优势藻种生长的影响[J]. 水资源研究, 2015, 4(6): 530-536.
    [36]
    王忠全, 程玲, 孙春晓, 等. 广利港夏季硅藻多样性指数与氮、磷营养盐组成的关系[J]. 广西科学, 2021, 28(2): 119-124.
    [37]
    黄亚男, 纪道斌, 龙良红, 等. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(3): 461-470.
    [38]
    JONES J I, YOUNG J, EATON J W, et al. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton[J]. Journal of Ecology, 2002, 90: 12-24.
    [39]
    LIBORIUSSEN L, JEPPESEN E. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake[J]. Freshwater Biology, 2003, 48(3): 418-431.
    [40]
    秦伯强, 宋玉芝, 高光. 附着生物在浅水富营养化湖泊藻-草型生态系统转化过程中的作用[J]. 中国科学C辑, 2006, 36(3): 283-288.
    [41]
    JENSEN J P, JEPPESEN E, OLRIK K, et al. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow danish lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(8): 1692-1699.
    [42]
    SOMMER U, GLIWICZ Z M, LAMPERT W, et al. The peg-model of seasonal succession of planktonic events in fresh waters[J]. Archiv Fur Hydrobiologie, 1986, 106(4): 433-471.
    [43]
    NALEWAJKO C, MURPHY T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J]. Limnology, 2001,2(1): 245-248.
    [44]
    JONES I D, ELLIOTT J A. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake[J]. Freshwater Biology, 2007, 52(6): 988-997.
  • Relative Articles

    [1]ZHANG Xinyue, KONG Yun, SHI Weihong, HUANG Yongzhou. GROWTH CHARACTERISTICS AND COMMUNITY FUNCTION OF PIPE WALL BIOFILMS UNDER CHLORINATION/CHLORAMINATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 47-54. doi: 10.13205/j.hjgc.202401007
    [2]QIAO Haibing, LI Guirong, PENG Feng, HAO Rukun, DIAO Yanfang, LI Chensheng, SUN Chengcai, CHEN Yongxin. PERFORMANCE OF SUBMERGED PLANTS COUPLED WITH BENTHIC ANIMALS IN REMOVING POLLUTANTS FROM WATER BODY SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 73-78. doi: 10.13205/j.hjgc.202412010
    [3]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [4]XUE Chonghua, ZHAO Yimeng, SUN Jiarong, LUO Cheng, Li Wenhui, WANG Qing, LI Junqi, HUANG Xin. EFFECTS OF WATER ENVIRONMENTAL FACTORS ON NITROGEN AND PHOSPHORUS RELEASE FROM PIPELINE SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 89-98. doi: 10.13205/j.hjgc.202312011
    [5]LIU Yeling, ZHAO Shigao, DONG Weiping, WANG Qing, YANG Wei, CUI Baoshan. PLANKTON COMMUNITY CHARACTERISTICS AND INFLUENCING FACTORS OF RIVER-LAKE WETLANDS IN TONGLING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 10-17,131. doi: 10.13205/j.hjgc.202301002
    [6]MA Xu, HAN Zhen, WANG Shiyan, LIU Xiaobo, ZHAO Shilin, LIU Chang, MENG Zhujian, ZHANG Huan, WANG Liang, ZHU Bei, TAN Yiqian, WANG Jie, LIU Wei, PENG Wenqi. RESPONSE CHARACTERISTICS OF SUBMERGED PLANT VALLISNERIA SPINULOSA YAN TO DIFFERENT FLOODING CONDITIONS IN POYANG LAKE AND IMPLICATIONS FOR ECOLOGICAL RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 204-212. doi: 10.13205/j.hjgc.202301025
    [7]ZHONG Yiwen, SU Wenxing, JIANG Shan, WANG Yinhong, LIU Wangrong, WU Genyi, ZENG Dong, CHEN Lei. MICROBIAL COMMUNITY SUCCESSION DURING LIQUID MANURE FERMENTATION AND ITS CORRELATION WITH ENVIRONMENTAL FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 145-153. doi: 10.13205/j.hjgc.202308018
    [8]ZHANG Hanxu, LI Xinyu, CUI Baoshan, WANG Qing, YU Hailing, WU Xia, XU Jiamei. EFFECT OF WETLAND ECOLOGICAL RESTORATION PROJECT ON MACROBENTHOS COMMUNITY IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 222-231. doi: 10.13205/j.hjgc.202301027
    [9]DUAN Tong, ZENG Xiaoyun, TAN Shucheng. REMOVAL OF ANTIBIOTIC RESISTANCE GENES DURING THE TREATMENT OF SWINE WASTEWATER BY MBR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 8-13,21. doi: 10.13205/j.hjgc.202204002
    [10]YI Hongxue, LI Jie, WANG Yae, ZHAO Wei, XIE Huina, ZHANG Wenli, QUAN Hairong, MU Hao, HU Kaiyao. EFFECTS OF ACHROMOBACTER DENITRIFICANS STRAIN 2-5 WITH IRON OXIDATION AND AEROBIC DENITRIFICATION FUNCTION ON BIOLOGICAL NITROGEN REMOVAL PERFORMANCE AND COMMUNITY STRUCTURE IN A SEQUENCING BATCH REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 211-216. doi: 10.13205/j.hjgc.202212028
    [11]MA Qiuxia, PANG Yong, ZHANG Pengcheng. FLUME EXPERIMENT STUDY ON MANNING COEFFICIENT,A KEY PARAMETER OF WATER ENVIRONMENT MODEL OF THE TAIHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 280-285. doi: 10.13205/j.hjgc.202206035
    [12]SU Jinwei, ZHANG Lingfei, YU Minghui, SUN Tianxin, WANG Bo, ZHAO Jinghao, WANG Ziyi, SUN Yue, ZHOU Shilei. CHARACTERISTICS AND DISTRIBUTION OF NITROGEN FORMS IN SEDIMENTS OF BAIYANGDIAN LAKE IN SUMMER AND AUTUMN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 53-58,153. doi: 10.13205/j.hjgc.202202009
    [13]LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011
    [14]XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
    [15]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [16]YAN Fei. A COMPREHENSIVE ECOLOGICAL RESTORATION SYSTEM FOR URBAN RIVER EUTROPHICATION MANAGEMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 59-62,246. doi: 10.13205/j.hjgc.202009010
    [17]ZHANG Yun-long, WANG Xuan, LIU Dan, LIAO Zhen-mei, LIU Qiang, LI Chun-hui, CAI Yan-peng. INFLUENCES OF GROUNDWATER DEPTH ON WATER TRANSPORT AND DISSIPATION IN SPAC SYSTEM OF PHRAGMITES AUSTRALIS IN A SEMI-ARID WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 7-13. doi: 10.13205/j.hjgc.202010002
    [18]WEI Wei-wei, LI Chun-hua, YE Chun, ZHENG Pei-ru, DAI Wan-qing, HUANG Xiao-yi, SHEN Guo-hui. EFFECT OF DECOMPOSITION OF HYDRRILLA VERTICILLATA ON PHOSPHORUS TRANSPORTATION AND TRANSFORMATION IN WATER-SEDIMENT-HYDRILLA VERTICILLATA SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 108-114. doi: 10.13205/j.hjgc.202006017
    [19]XU Xin-yu, LI Wei-min, YE Jiang-yu. TREATMENT OF LANDFILL LEACHATE BY PHOTOSYNTHETIC BACTERIA IN SBR SYSTEM AND ANALYSIS ON BIOLOGICAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 99-104. doi: 10.13205/j.hjgc.202001015
    [20]GU Hao, ZHANG Wen, LIU Guo, CHEN Chun-mei, DENG Zhi-han, XIE Zhi-hao. EFFECTS OF ENVIRONMENTAL FACTORS ON THE RELEASE OF ORGANIC PHOSPHORUS FROM SOIL COVERED SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 179-184. doi: 10.13205/j.hjgc.202005031
  • Cited by

    Periodical cited type(3)

    1. 赵李佳,钱书杰,张文强,单保庆,张殿伟,李杰,赵纯真,魏东洋. 白洋淀水体溶解无机碳分布特征及影响因素. 环境工程学报. 2025(01): 81-90 .
    2. 李亚楠,陶苗苗,宋海涯,肖思思,周晓红,许小红. 菹草茎叶附着细菌与周围环境中细菌群落结构及功能差异分析. 环境科学. 2024(12): 7304-7315 .
    3. 扎西拉姆,周建设,潘瑛子. 拉萨河秋季着生藻类群落结构特征及其水质评价. 环境工程. 2023(S2): 774-778 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 89.1 %META: 89.1 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.2 %其他: 18.2 %其他: 0.3 %其他: 0.3 %上海: 0.3 %上海: 0.3 %东莞: 1.1 %东莞: 1.1 %保定: 0.6 %保定: 0.6 %北京: 4.8 %北京: 4.8 %十堰: 0.6 %十堰: 0.6 %南京: 1.1 %南京: 1.1 %南昌: 0.3 %南昌: 0.3 %厦门: 0.3 %厦门: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %唐山: 0.6 %唐山: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大同: 0.6 %大同: 0.6 %大连: 0.3 %大连: 0.3 %天津: 2.2 %天津: 2.2 %宣城: 0.3 %宣城: 0.3 %常州: 0.6 %常州: 0.6 %常德: 0.8 %常德: 0.8 %广州: 0.3 %广州: 0.3 %张家口: 0.3 %张家口: 0.3 %徐州: 0.3 %徐州: 0.3 %成都: 0.6 %成都: 0.6 %扬州: 0.8 %扬州: 0.8 %新乡: 0.6 %新乡: 0.6 %昆明: 1.4 %昆明: 1.4 %晋城: 0.3 %晋城: 0.3 %武汉: 0.8 %武汉: 0.8 %济南: 0.3 %济南: 0.3 %淄博: 0.6 %淄博: 0.6 %湖州: 0.8 %湖州: 0.8 %漯河: 4.2 %漯河: 4.2 %漳州: 0.3 %漳州: 0.3 %玉林: 0.3 %玉林: 0.3 %芒廷维尤: 28.6 %芒廷维尤: 28.6 %芝加哥: 2.0 %芝加哥: 2.0 %衡水: 0.3 %衡水: 0.3 %衢州: 0.3 %衢州: 0.3 %西宁: 17.9 %西宁: 17.9 %贵阳: 1.1 %贵阳: 1.1 %运城: 1.4 %运城: 1.4 %遵义: 0.3 %遵义: 0.3 %郑州: 1.4 %郑州: 1.4 %重庆: 0.3 %重庆: 0.3 %长沙: 0.6 %长沙: 0.6 %青岛: 0.3 %青岛: 0.3 %其他其他上海东莞保定北京十堰南京南昌厦门合肥呼和浩特哈尔滨唐山嘉兴大同大连天津宣城常州常德广州张家口徐州成都扬州新乡昆明晋城武汉济南淄博湖州漯河漳州玉林芒廷维尤芝加哥衡水衢州西宁贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (317) PDF downloads(6) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return