Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
Citation: ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006

MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD

doi: 10.13205/j.hjgc.202305006
  • Received Date: 2022-09-27
  • In order to investigate the effect of electric field on microbial community structure and cell structure of anammox, at room temperature and high nitrogen loading, the effect of electric field on an anammox system was investigated in a continuously stirred reactor (CSTR), with an influent NH4+-N/NO2--N value of 1.2. The results showed that the electric field could influence the structure and relative abundance of the microbial community, at room temperature. Under the electric field, there were depressions and folds in the microbial cell structure, which effectively increased the cell surface area, improved the mass transfer efficiency, and reduced the inhibition of high nitrogen load. The anammox bacteria and denitrifying bacteria could enhance nitrogen removal efficiency through a synergistic effect, maintain system stability, and resist the inhibition of high nitrogen loading. However, high nitrogen loading could easily breed other miscellaneous bacteria and destroy microbial cell structure. The breeding filamentous bacteria could compete with anammox and other functional bacteria, and become the dominant species, which reduces the relative abundance of functional flora and inhibited the development of the functional microbial community.
  • loading
  • [1]
    FENG Y,WANG B,PENG Y Z, et al. Enhanced nitrogen removal from low COD/TIN mainstream wastewater in a continuous plug-flow reactor via partial nitrification, simultaneous anammox and endogenous denitrification (PN-SAED) process[J]. Bioresource Technology,2021,345:126539.
    [2]
    PAN C,XU D D,DONG Z Y, et al. Effect of temperature decrease on anammox granular sludge: shock and adaptation[J]. Science of the Total Environment,2021,798:149242.
    [3]
    WAN L Y,LIU H,WANG X Z. Anaerobic ammonium oxidation coupled to Fe(Ⅲ) reduction: discovery, mechanism and application prospects in wastewater treatment[J]. The Science of the Total Environment,2021,818:151687.
    [4]
    JUAN-DÍAZ X,PÉREZ J,CARRERA J. Effective dampening of temperature effects in an anammox reactor treating real mainstream wastewater[J]. Journal of Water Process Engineering,2021,40:101853.
    [5]
    XIE F,ZHAO B W,CUI Y, et al. Enhancing nitrogen removal performance of anammox process after short-term pH and temperature shocks by coupling with iron-carbon micro-electrolysis[J]. Journal of Cleaner Production,2020,289:125753.
    [6]
    DAALKHAIJAV U,NEMATI M. Ammonia loading rate: an effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent[J]. Environmental Technology,2014,35(5/6/7/8):523-531.
    [7]
    宋波.电场刺激技术在微生物工程中的应用[J].生物技术进展,2012,2(5):345-348.
    [8]
    王凡,胡筱敏,李雪洁, 等.脉冲电场对好氧反硝化细菌生长代谢的影响[J].东北大学学报(自然科学版),2022,43(1):111-116.
    [9]
    李亚男,姚丽,隋倩雯, 等.厌氧氨氧化细菌富集培养过程微生物结构与功能解析[J].环境科学学报,2021,41(1):92-101.
    [10]
    LI B L, WANG Y, LI J T, et al. The symbiosis of anaerobic ammonium oxidation bacteria and heterotrophic denitrification bacteria in a size-fractioned single-stage partial nitrification/anammox reactor[J]. Biochemical Engineering Journal,2019,151:107353.
    [11]
    SWATI T, SUNIL K G. Symbiosis of denitrification, anammox and anaerobic pathways: an innovative approach for confiscating the major bottlenecks of anammox process[J]. Chemical Engineering Journal,2017,313:355-363.
    [12]
    LIU L J, JI M, WANG F, et al. Microbial community shift and functional genes in response to nitrogen loading variations in an anammox biofilm reactor[J]. International Biodeterioration & Biodegradation,2020,153:105023.
    [13]
    WANG S Y, ZHU G B, LI Y F, et al. Robustness of anammox granular sludge treating low-strength sewage under various shock loadings: microbial mechanism and little N2O emission[J]. Journal of Environmental Sciences,2019,12:141-153.
    [14]
    HE S L, CHEN Y, QIN M, et al. Effects of temperature on anammox performance and community structure[J]. Bioresource Technology,2018,260:186-195.
    [15]
    WANG W G,YAN Y,SONG C K, et al. The microbial community structure change of an anaerobic ammonia oxidation reactor in response to decreasing temperatures[J]. Environmental Science and Pollution Research International,2018,25(35):35330-35341.
    [16]
    沈根祥,周海花,罗启仕, 等.直流电场对根际土壤微生物群落的影响及其机理[J].农业环境科学学报,2008,27(3):920-925.
    [17]
    范瑞娟,郭书海,李凤梅, 等.二维电场中微生物群落动态及混合有机物降解特征[J].环境科学学报,2017,37(9):3543-3552.
    [18]
    王泓,吴莎,刘珂, 等.氮负荷提升方式强化ANAMMOX反应器的性能研究[J].中国给水排水,2021,37(9):90-96.
    [19]
    刘小宁,张文杰.进水NO2--N浓度对厌氧氨氧化反应器的影响[J].环境工程,2019,37(6):31-36.
    [20]
    姚利,付龙云,王艳芹, 等.利用上流式双层厌氧滤器启动厌氧氨氧化研究[J].农业资源与环境学报,2018,35(2):133-138.
    [21]
    卓梦琼,孙盛进,张哲, 等.电场作用对不同藻菌体系处理猪场废水的强化机制研究[J].环境科学学报,2022,42(4):141-148.
    [22]
    LI L, DONG Y H, QIAN G S, et al. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen[J]. Bioresource Technology,2018,258:168-176.
    [23]
    WANG D P, HUANG K L, HE X W, et al. Varied interspecies interactions between anammox and denitrifying bacteria enhanced nitrogen removal in a single-stage simultaneous anammox and denitrification system[J]. The Science of the Total Environment,2022,813:152519.
    [24]
    WANG Y, LI B J, XUE F R, et al. Partial nitrification coupled with denitrification and anammox to treat landfill leachate in a tower biofilter reactor (TBFR)[J]. Journal of Water Process Engineering,2021,42:102155.
    [25]
    CAO X W, ZHOU X, XUE M, et al. Evaluation of nitrogen removal and N2O emission in a novel anammox coupled with sulfite-driven autotrophic denitrification system: influence of pH[J]. Journal of Cleaner Production,2021,321:128984.
    [26]
    QIU J G, LI X Y, PENG Y Z, et al. Advanced nitrogen removal from landfill leachate via a two-stage combined process of partial nitrification-Anammox (PNA) and partial denitrification-Anammox (PDA)[J]. The Science of the Total Environment,2021,810:151186.
    [27]
    周生学,马洁.弱直流电场对枯草芽孢杆菌生长和代谢活性的作用[J].应用化学,2012,29(4):422-427.
    [28]
    REGO D, COSTA L, PEREIRA M T, et al. Cell membrane permeabilization studies of Chlorella sp by pulsed electric fields[J]. IEEE Transactions on Plasma Science,2015,43(10):3483-3488.
    [29]
    周婷,邹婷婷,李倩, 等.响应面法优化脉冲电场处理油菜籽的工艺及品质评价[J].食品安全质量检测学报,2022,13(8):2618-2624.
    [30]
    ZHANG C, LI L, HU X M, et al. Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature[J]. Bioresource Technology,2018,275:225-231.
    [31]
    董铭,白云,李月秋,等.脉冲电场对食品蛋白质改性作用的研究进展[J].食品工业科技,2019,40(2):293-299.
    [32]
    杨娇,于洪剑,白爱枝, 等.高压电场干燥和热风干燥对马铃薯蛋白质二级结构的影响[J].保鲜与加工,2020,20(3):85-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return