Citation: | AN Baihong, YANG Hongquan, LIU Jun, CHENG Yan, CHEN Hongbin. ANALYSIS ON SCALE FORMATION IN TREATMENT AND REUSE SYSTEM FOR COAL GASIFICATION ASH-CONTAINING WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 52-60. doi: 10.13205/j.hjgc.202305008 |
[1] |
GUO Y, ZHANG Y X, ZHAO X, et al. Multifaceted evaluation of distribution, occurrence, and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong region, China: a case study[J]. Science of the Total Environment, 2022, 831:154726.
|
[2] |
徐振刚. 中国现代煤化工近25年发展回顾·反思·展望[J]. 煤炭科学技术, 2020, 48(8):1-25.
|
[3] |
WANG G F, XU Y X, REN H W. Intelligent and ecological coal mining as well as clean utilization technology in China: review and prospects[J]. International Journal of Mining Science and Technology, 2019, 29(2):161-169.
|
[4] |
XU J, YANG Y, LI Y W. Recent development in converting coal to clean fuels in China[J]. Fuel, 2015, 152:122-130.
|
[5] |
张文, 林长喜, 彭永臻. 现代煤化工废水近零排放技术集成与优化建议[J]. 环境工程, 2021, 39(11): 41-45
,109.
|
[6] |
NIU Y J, XU J, MIAO Z K, et al. Distribution modes of residual carbon and ash in coal gasification fine slag and its feasibility analysis as particle electrodes[J]. Chemosphere, 2022, 303:135159-135171.
|
[7] |
ZHU H, HAN Y X, XU C Y, et al. Overview of the state of the art of processes and technical bottlenecks for coal gasification wastewater treatment[J]. Science of the Total Environment, 2018, 637/638:1108-1126.
|
[8] |
ONCEL M S, MUHCU A, DEMIRBAS E, et al. A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 989-995.
|
[9] |
JIA S Y, ZHUANG H F, HAN H J, et al. Application of industrial ecology in water utilization of coal chemical industry: a case study in Erdos, China[J]. Journal of Cleaner Production, 2016, 135: 20-29.
|
[10] |
肖关忠. 焦化厂废水去除SS及硬度的工程应用设计[J].净水技术, 2017, 36(8):85-89.
|
[11] |
BATHLA A, KAUR D, PAL B. Impact of metal ions (Cr6+/Mn7+) loaded CaCO3 extracted from tap water for adsorption/degradation of toxic pollutants under sunlight[J]. Materials. Express, 2022, 12:106-113.
|
[12] |
HE Z, XU Y, YANG X, et al. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: a pilot trial and mechanistic analysis[J]. Science of the Total Environment, 2022, 838: 156504.
|
[13] |
ABIR F, MESNAUI M, ABOULIATIM Y, et al. Effect of the addition of iron oxide on the microstructure of ye’elimite[J]. Cement and Concrete Research, 2022,151: 106625.
|
[14] |
LIU D, WANG W, TU Y, et al. Flotation specificity of coal gasification fine slag based on release analysis[J]. Journal of Cleaner Production, 2022, 363: 132426-132436.
|
[15] |
PRAZERES A R, FEMANDES F, LUZA S, et al. Simple processes for contamination removal in cheesemaking wastewater: CaCO3, Mg(OH)2, FeSO4 and FeCl3[J]. Journal of Environmental Chemical Engineering, 2020, 8:104034-104041.
|
[16] |
WANG Y F, TANG Y G, HUAN B B, et al. Chemical composition changes during the commercial entrained-flow general electric and gaskombinat schwarze pumpe coal gasification processes[J]. Energy & Fuels, 2021, 35:883-893.
|
[17] |
LAABS M, SCHWITALLA D H, GE Z, et al. Comparison of setups for measuring the viscosity of coal ash slags for entrained-flow gasification[J]. Fuel, 2022, 307:121777.
|
[18] |
BAGATINI M C, KLUG G L, HECK N C, et al. Behaviour of coal ashes for pulverised coal injection at high temperatures in relation to their chemical and mineralogical composition-experimental and computational analysis[J]. Ironmaking and Steelmaking, 2009, 36:582-589.
|
[19] |
QIAN B F, WANG Y L, ZHAO Q R, et al. Preparation and luminescence properties of Eu3+ incorporated in CaCO3 nanocrystals with multiple sites[J]. Journal of Luminescence, 2021, 239:118344.
|
[20] |
SCHWITALLA D H, GUHL S, LAABS M, et al. Thermochemical and analytical approach to describe secondary slag phase formation and local process conditions in a full-scale BGL gasifier[J]. Fuel Processing Technology, 2021, 217:106833.
|
[21] |
LI N, LI Y, BAN Y P, et al. Direct production of high hydrogen syngas by steam gasification of Shengli lignite/chars: remarkable promotion effect of inherent minerals and pyrolysis temperature[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5865-5872.
|
[22] |
LU H, BAI J, VASSILEV S V, et al. The crystallization behavior of anorthite in coal ash slag under gasification condition[J]. Chemical Engineering Journal, 2022, 445:136683.
|
[23] |
VARGAS S, FRANDSEN F, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy and Combustion Science, 2001, 27:237-429.
|
[24] |
姚芳华,王振宏,郑亚娟. 含硼废液处理方法的研究进展[R]. 黑龙江:中国核学会, 2011.
|
[25] |
HAO C, ZHOU Y, CAO J X, et al. Phosphorus co-existing in water: a new mechanism to boost boron removal by calcined oyster shell powder[J]. Molecules, 2022, 27:54-64.
|
[26] |
辞海, 理科(上)[M]. 上海:上海辞书出版社, 1978.
|
[27] |
MEHMET B. Ash melting behaviour of some low-grade Turkish coals and some imported steam coals[J]. Combustion Theory and Modelling, 2019, 23:1105-1118.
|
[28] |
TENG K H, KAZI S N, AMIRI A, et al. Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces[J]. Powder Technology, 2017, 315:216-226.
|
[29] |
高旭, 李鹏, 王学刚,等. EDTA螯合-电絮凝处理低浓度含铀废水[J]. 环境工程, 2018, 36(7): 27-32.
|
[30] |
侯海萌, 祁国恕, 王坚,等. BDD电极电化学氧化降解废乳化液[J]. 环境工程, 2022, 40(1): 46-51.
|
[31] |
袁金刚, 朱继双, 韩勇,等. 电絮凝技术处理煤气化灰水[J]. 化工环保, 2018, 38(5): 541-545.
|
[32] |
程一杰, 于志勇, 曹求洋,等. 冲渣循环水管道结垢原因分析及化学清洗[J]. 工业水处理, 2016, 36: 115-117.
|
[33] |
焦庆祝, 艾李申. 工业设备化学清洗方法与缓蚀技术[J]. 清洗世界, 2018, 34(2): 28-33
,48.
|