Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YIN Yalun, HOU Jingming, LI Xinyi, LUAN Guangxue, GAO Xujun, WANG Tian, SHEN Jian, QIAO Mengxi. APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 82-90. doi: 10.13205/j.hjgc.202404010
Citation: YAN Dongjie, ZHANG Xiaohai, YUAN Liangyu, YU Ya. EFFECT OF WIRE ELECTRODE STRUCTURE PARAMETERS ON DUST REMOVAL PERFORMANCE OF PERFORATED PLATE ELECTROSTATIC PRECIPITATORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 61-68,146. doi: 10.13205/j.hjgc.202305009

EFFECT OF WIRE ELECTRODE STRUCTURE PARAMETERS ON DUST REMOVAL PERFORMANCE OF PERFORATED PLATE ELECTROSTATIC PRECIPITATORS

doi: 10.13205/j.hjgc.202305009
  • Received Date: 2022-09-19
  • Wire electrode structure is an important factor affecting the removal efficiency of the electrostatic precipitators. A reasonable wire electrode structure can increase the ionization degree of the air, the electric field strength and space charge density in the electrostatic precipitator, and make the dust particles more likely to be charged to the collecting plate. Numerical simulation was used to study the effect of a V-shaped barbed wire structure on the internal electric field distribution, flow field distribution, and dust removal efficiency of the perforated plate electrostatic precipitator. The study found that the electric field intensity near the perforated collecting plate fluctuated spatially and periodically, and the airflow decreased after entering the perforated plate cavity, which was conducive to collecting fine particles. Changing the barb length and barb spacing would affect the electric field strength, space charge density, and gas velocity distribution near the plate, but had little effect on uniformity of the electric field. When the barb length was 25 mm and the barb spacing was 50 mm, the electrostatic precipitator had the highest collection efficiency for particles of various sizes. The collection efficiency of particles with a value of 0.1 μm and 1 μm could reach 69.63% and 76.84% respectively, and the research results had important guidance for the design of polar structures in practical applications.
  • [1]
    邓杰文. 电除尘器内放电过程中颗粒运动特性研究[D]. 北京:华北电力大学(北京),2018.
    [2]
    侯雪超. 电除尘器电极结构设计及流场CFD模拟[D]. 保定:河北大学,2021.
    [3]
    李庆, 剧晓晨, 殷宇朝,等. 孔板对微细粉尘收集效率研究[J]. 河北大学学报(自然科学版),2017,37(1):13-18.
    [4]
    张金龙, 党小庆, 乐文毅,等. 多孔收尘电极电场中荷电粒子的沉降规律及其除尘性能预测[J]. 环境工程学报,2022,16(5):1589-1601.
    [5]
    WEN T Y, KRICHTAFOVITCH I, MAMISHEV A V. Reduction of aerosol particulates through the use of an electrostatic precipitator with guidance-plate-covered collecting electrodes[J]. Journal of Aerosol Science, 2015, 79: 40-47.
    [6]
    耿屹楠, 曾嵘, 何金良,等. 1 m棒-板间隙雷电冲击放电电场测量[J]. 中国电机工程学报,2011,31(4):130-136.
    [7]
    孟晓波, 惠建峰, 卞星明,等. 低气压下流注放电特性的研究[J]. 中国电机工程学报,2011,31(25):139-149.
    [8]
    田冬梅, 肖占莹. 常用除尘技术应用分析[J]. 内蒙古煤炭经济,2019(22):1-4.
    [9]
    郭尹亮, 向晓东, 盖龄童. 芒刺电除尘器板电流密度分布及芒刺间距优化[J]. 高电压技术,2010,36(4):1021-1025.
    [10]
    SHEN H, YU W X, JIA H W, et al. Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes[J]. Journal of Electrostatics, 2018, 95: 61-70.
    [11]
    陈兵, 郭永恒, 李宏姣,等. 静电除尘器极板配置形式与场内颗粒迁移规律数值模拟研究[J]. 华电技术,2020,42(9):1-8.
    [12]
    闫东杰, 贡浩, 张子昂,等. 芒刺线-板式电除尘器内流场研究[J]. 中国电机工程学报,2021,41(19):6707-6716.
    [13]
    向晓东, 刘新敏, 张国权. 长芒刺电除尘器收尘性能及离子风效应研究[J]. 环境工程,1999,17(5):29-32.
    [14]
    闫东杰, 贡浩, 张子昂,等. 芒刺线-板式电除尘器内离子风特性研究[J]. 中国电机工程学报,2021,41(9):3250-3259.
    [15]
    杨少华. 微细粉尘荷电及开孔板电晕特性试验研究[D]. 西安:西安理工大学, 2013.
    [16]
    XU X, ZHENG C H, YAN P, et al. Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator[J]. Separation and Purification Technology, 2016, 166: 157-163.
    [17]
    GAO W C, WANG Y F, ZHANG H, et al. Numerical simulation of particle migration in electrostatic precipitator with different electrode configurations[J]. Powder Technology, 2020, 361: 238-247.
    [18]
    JEDRUSIK M, SWIERCZOK A, TEISSEYRE R. Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design[J]. Powder Technology, 2003, 135/136: 295-301.
    [19]
    PODLINSKI J, BERENDT A, MIZERACZYK J. Electrohydrodynamic secondary flow and particle collection efficiency in spike-plate multi-electrode electrostatic precipitator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(5): 1481-1488.
    [20]
    龙正伟, 宋蔷, 李水清,等. 复合式电袋除尘器的伏安特性[J]. 中国电机工程学报,2010,30(14):13-20.
    [21]
    BROCILO D, PODLINSKI J, CHANG J S, et al. Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators[J]. Journal of Physics: Conference Series, 2008, 142.
    [22]
    FARNOOSH N, ADAMIAK K, CASTLE G S. Numerical calculations of submicron particle removal in a spike-plate electrostatic precipitator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1439-1452.
    [23]
    闫东杰,丁柳,玉亚,等. 线板式电除尘器中离子风的数值模拟[J]. 安全与环境学报,2021,21(2):808-814.
    [24]
    闫东杰,庄倩,玉亚,等. 烟气温度对电除尘器性能影响的数值模拟[J]. 中国环境科学,2021,41(6):2577-2585.
    [25]
    PENNEY G W, MATICK R E. Potentials in D-C corona fields[J]. Transactions of the American Institute of Electrical Engineers, Part Ⅰ: Communication and Electronics, 1960, 78(2): 91-99.
  • Relative Articles

    [1]LIU Mingkun, DANG Xiaoqing, XIE Dongming, LE Wenyi, FENG Xiaofeng, ZHENG Huachun, LI Shijie, WANG Zhijian. INFLUENCE OF ELECTRODE CONFIGURATION AND PARAMETERS ON ELECTRIC FIELD AND DUST REMOVAL PERFORMANCE OF POROUS ELECTRODE ESP[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 122-130. doi: 10.13205/j.hjgc.202403015
    [8]Ding Zhijiang Lu Mingyuan Xiao Lichun, . NUMERICAL SIMULATION METHOD OF GAS FLOW DISTRIBUTION IN ELECTROSTATIC PRECIPITATOR FOR CONVERTER GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 92-96. doi: 10.13205/j.hjgc.201504019
    [9]He Yuzhong Zhao Haibao Li Jianguo Yao Yuping, . CALCULATION OF DUST/SO3 RATIO FOR LOW-LOW TEMPERATURE ELECTROSTATIC PRECIPITATOR AND ANALYSIS OF COALS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 76-79. doi: 10.13205/j.hjgc.201502016
    [10]Zhang Dingyong, Li Zhaomin, Guo Longjiang, Ma Tao, Qin Guoshun, Li Songyan. FLUE GAS FLOW HEAT TRANSFER AND ACID CONDENSATION LAWS IN PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 77-79. doi: 10.13205/j.hjgc.201501018
  • Cited by

    Periodical cited type(5)

    1. 施汉昌,汪秋婉,张明凯,柯细勇. 精确曝气实现污水处理厂节能减排:计算方法与控制策略. 中国给水排水. 2024(20): 1-6 .
    2. 李劢,郭兴芳,申世峰,张惠源,张玲玲,尚兴盈,陶润先. 高占比工业废水污水处理厂提标改造效果分析. 给水排水. 2022(05): 65-69 .
    3. 高嵩,邱勇,孟凡琳,张夏颖,盘德立,王凯军. 污水处理工艺数据分析技术的现状与趋势. 环境工程. 2022(06): 194-203 . 本站查看
    4. 袁慧,刘永镇. 全流程分析在污水处理脱氮除磷工艺优化的运用探讨. 清洗世界. 2022(09): 4-6 .
    5. 鲍任兵,高廷杨,宫玲,徐健,万年红,雷培树,镇祥华. 污水生物脱氮除磷工艺优化技术综述. 净水技术. 2021(09): 14-20 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.9 %FULLTEXT: 14.9 %META: 83.1 %META: 83.1 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %其他: 1.0 %其他: 1.0 %上海: 0.5 %上海: 0.5 %东莞: 1.0 %东莞: 1.0 %保定: 0.5 %保定: 0.5 %十堰: 0.5 %十堰: 0.5 %南京: 2.5 %南京: 2.5 %双鸭山: 0.5 %双鸭山: 0.5 %台州: 0.5 %台州: 0.5 %合肥: 0.5 %合肥: 0.5 %大同: 1.0 %大同: 1.0 %天津: 2.5 %天津: 2.5 %常德: 1.5 %常德: 1.5 %广州: 0.5 %广州: 0.5 %张家口: 0.5 %张家口: 0.5 %成都: 1.0 %成都: 1.0 %扬州: 2.5 %扬州: 2.5 %无锡: 1.0 %无锡: 1.0 %昆明: 0.5 %昆明: 0.5 %晋城: 6.0 %晋城: 6.0 %杭州: 2.0 %杭州: 2.0 %格兰特县: 0.5 %格兰特县: 0.5 %江门: 1.5 %江门: 1.5 %沈阳: 0.5 %沈阳: 0.5 %温州: 1.0 %温州: 1.0 %漯河: 6.5 %漯河: 6.5 %绍兴: 0.5 %绍兴: 0.5 %绥化: 2.0 %绥化: 2.0 %芒廷维尤: 19.9 %芒廷维尤: 19.9 %芝加哥: 2.0 %芝加哥: 2.0 %西宁: 12.4 %西宁: 12.4 %西安: 2.0 %西安: 2.0 %贵阳: 1.5 %贵阳: 1.5 %运城: 2.5 %运城: 2.5 %连云港: 0.5 %连云港: 0.5 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 1.0 %重庆: 1.0 %金华: 0.5 %金华: 0.5 %长沙: 2.0 %长沙: 2.0 %阜阳: 1.0 %阜阳: 1.0 %龙岩: 0.5 %龙岩: 0.5 %其他其他上海东莞保定十堰南京双鸭山台州合肥大同天津常德广州张家口成都扬州无锡昆明晋城杭州格兰特县江门沈阳温州漯河绍兴绥化芒廷维尤芝加哥西宁西安贵阳运城连云港遵义邯郸郑州重庆金华长沙阜阳龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads(4) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return