Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YU Zhiyuan, LI Erping, YANG Ting, DAI Xin. DESIGN AND DEVELOPMENT OF A STABILIZER FOR ARSENIC-CONTAINING RESIDUE BASED ON SIMPLEX-CENTROID DESIGN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 84-91. doi: 10.13205/j.hjgc.202305012
Citation: YU Zhiyuan, LI Erping, YANG Ting, DAI Xin. DESIGN AND DEVELOPMENT OF A STABILIZER FOR ARSENIC-CONTAINING RESIDUE BASED ON SIMPLEX-CENTROID DESIGN METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 84-91. doi: 10.13205/j.hjgc.202305012

DESIGN AND DEVELOPMENT OF A STABILIZER FOR ARSENIC-CONTAINING RESIDUE BASED ON SIMPLEX-CENTROID DESIGN METHOD

doi: 10.13205/j.hjgc.202305012
  • Received Date: 2022-06-13
  • In this study, the simplex-centroid design method (SCMD) was used to model and optimize the mixing ratio of FeSO4·H2O zero-valent iron (ZVI) and manganese dioxide (MnO2) as the raw materials, and a new composite Fe-based stabilizer was designed and developed, and then applied to the stabilization of arsenic-containing residue. The results showed that the optimum combination for high As stabilization performance and low cost of stabilizer was the mixture of 65.05, 10.00 and 24.95 % FeSO4·H2O, ZVI and MnO2. The leaching concentration of As decreased from 162 mg/L to 0.645 mg/L, lower than the limit value(1.2 mg/L) prescribed in China. The stability mechanism of As in ACR was studied by SEM-EDS, FTIR and XPS, while the available As was stabilized by adsorption, complexation and precipitation of Fe/Mn (hydride) oxide and Fe(Ⅲ), forming stable amorphous Fe/Mn-As. The composite Fe-based stabilizer combined with H2SO4 obtained excellent stability of As through a process of release-oxidation-stabilization. This study provides an sound theoretical basis for design of multi-component composite stabilizers and effective stabilization of arsenic-containing residue.
  • [1]
    LOWENSTAM H A. Minerals formed by organisms[J]. Science, 1981, 211(4487): 1126-1131.
    [2]
    RIVEROS P A, DUTRIZAC J E, SPENCER P. Arsenic disposal practices in the metallurgical industry[J]. Canadian Metallurgical Quarterly, 2001, 40(4): 395-420.
    [3]
    ZHANG D N, WANG S F, WANG Y, et al. The long-term stability of calcium arsenates: implications for phase transformation and arsenic mobilization[J]. Journal of Environmental Sciences, 2019, 84(10): 29-41.
    [4]
    MARTINEZ-VILLEGAS N, BRIONES-GALLARDO R, RAMOS-LEAL J A, et al. Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem[J]. Environmental Pollution, 2013, 176(5): 114-122.
    [5]
    YOON I H, MOON D H, KIM K W, et al. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust[J]. Journal of Environmental Management, 2010, 91(11): 2322-2328.
    [6]
    张淑媛, 童宏祥, 徐诗琦, 等. 次氯酸钙/氧化钙对高砷污泥的氧化稳定化处理[J]. 环境工程学报, 2018, 12(2): 625-629.
    [7]
    WANG X, ZHANG H, WANG L L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment[J]. The Science of the Total Environment, 2019, 668: 32-39.
    [8]
    CLANCY T M, SNYDER K V, REDDY R, et al. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment[J]. Journal of Hazardous Materials, 2015, 300: 522-529.
    [9]
    罗中秋, 周新涛, 贾庆明, 等. 磷渣基地聚物材料固化砷钙渣的机理[J]. 硅酸盐学报, 2015, 43(5):699-704.
    [10]
    LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632: 1486-1494.
    [11]
    LI Y, MIN X B, CHAI L Y, et al. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals[J]. Journal of Environmental Management, 2016, 181: 756-761.
    [12]
    LIU D G, MIN X B, KE Y, et al. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker[J]. Environmental Science and Pollution Research, 2018, 25(8): 7600-7607.
    [13]
    李辕成, 闵小波, 柴立元, 等. 冶炼废渣协同固化/稳定化含砷污泥[C]//第五届重金属污染防治及风险评价研讨会暨重金属污染防治专业委员会2015年学术年会,南宁, 2015: 261-267.
    [14]
    LI E P, YANG T, WANG Q, et al. Long-term stability of arsenic calcium residue (ACR) treated with FeSO4 and H2SO4: function of H+ and Fe(Ⅱ)[J]. Journal of Hazardous Materials, 2021, 420: 126549.
    [15]
    JING C Y, KORFIATIS G P, MENG X G. Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement[J]. Environmental Science & Technology, 2003, 37(21): 5050-5056.
    [16]
    JIA Y F, XU L Y, WANG X, et al. Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite[J]. Geochimica et Cosmochimica Acta, 2007, 71(7): 1643-1654.
    [17]
    SONG J, JIA S Y, YU B, et al. Formation of iron (hydr) oxides during the abiotic oxidation of Fe (Ⅱ) in the presence of arsenate[J]. Journal of Hazardous Materials, 2015, 294: 70-79.
    [18]
    WANG S F, ZHANG D N, LI X L, et al. Arsenic associated with gypsum produced from Fe (Ⅲ)-As (Ⅴ) coprecipitation: implications for the stability of industrial As-bearing waste[J]. Journal of Hazardous Materials, 2018, 360: 311-318.
  • Relative Articles

    [1]TONG Jingzhe, NI Changjian, MI Jiayuan, JIANG Mengjiao, ZHANG Ying, SHI Qiaoyu. A BP NEURAL NETWORK MODEL OF AEROSOL SCATTERING HYGROSCOPIC GROWTH FACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 131-137,165. doi: 10.13205/j.hjgc.202307018
    [2]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [3]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [4]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [5]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [6]XIE Wei, XU Jiao, LIN Zhiguo, YAN Di, ZHANG Yinglei. RESEARCH ON REAL-TIME SOURCE APPORTIONMENT METHOD OF VOCs BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 231-238. doi: 10.13205/j.hjgc.202212031
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [9]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(6)

    1. 张亮,杨博文,刘宇衡,张雨,高瑜,李佳诚,李俊辰,林斯杰. 基于机器视觉的生化池监测技术. 环境工程. 2025(03): 1-10 . 本站查看
    2. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较. 环境工程. 2024(03): 254-260 . 本站查看
    3. 冯丁,刘晶静,马文丹,刘玉学,杨尘,张萌萌. 基于机器学习的生物炭吸附重金属建模研究进展. 工业水处理. 2024(12): 1-11 .
    4. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    5. 李长江,余海涛,李官星,李玥洋,谭雯文. 基于SqueezeNet-Tiny的可回收垃圾智能垃圾桶设计及实现. 现代信息科技. 2022(17): 75-77 .
    6. 亢红波,蔡学瑞,杨亮,周倩倩. 一种智能垃圾分类装置设计. 西安邮电大学学报. 2022(05): 60-66 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 86.9 %META: 86.9 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.1 %其他: 17.1 %其他: 1.1 %其他: 1.1 %China: 0.6 %China: 0.6 %Howard: 0.2 %Howard: 0.2 %上海: 8.1 %上海: 8.1 %东莞: 4.3 %东莞: 4.3 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %亚特兰大: 0.2 %亚特兰大: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 1.3 %佛山: 1.3 %保定: 1.9 %保定: 1.9 %北京: 3.4 %北京: 3.4 %十堰: 0.2 %十堰: 0.2 %南京: 1.1 %南京: 1.1 %台州: 1.5 %台州: 1.5 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 0.2 %大同: 0.2 %大连: 1.7 %大连: 1.7 %天津: 2.1 %天津: 2.1 %太原: 0.2 %太原: 0.2 %安大略: 0.2 %安大略: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %常德: 0.6 %常德: 0.6 %广州: 2.4 %广州: 2.4 %张家口: 0.2 %张家口: 0.2 %意法半: 0.2 %意法半: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.2 %杭州: 3.2 %杰克逊维尔: 0.2 %杰克逊维尔: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.1 %武汉: 1.1 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.2 %泰安: 0.2 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.6 %济南: 0.6 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 2.6 %漯河: 2.6 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %绥化: 0.4 %绥化: 0.4 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 1.1 %芝加哥: 1.1 %衡水: 2.1 %衡水: 2.1 %衡阳: 0.2 %衡阳: 0.2 %西宁: 14.3 %西宁: 14.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.6 %鄂州: 0.6 %重庆: 1.1 %重庆: 1.1 %金华: 0.2 %金华: 0.2 %长沙: 1.9 %长沙: 1.9 %青岛: 0.4 %青岛: 0.4 %其他其他ChinaHoward上海东莞临汾乌鲁木齐亚特兰大伦敦佛山保定北京十堰南京台州合肥呼和浩特和田哈尔滨嘉兴大同大连天津太原安大略宜春宣城密蘇里城常德广州张家口意法半成都扬州无锡昆明晋城朝阳杭州杰克逊维尔桂林武汉汕头沈阳泰安洛杉矶济南深圳温州湖州漯河濮阳焦作石家庄福州绥化芒廷维尤芝加哥衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(2) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return