Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Tao, LING Xiaolong, DONG Yuanyuan, BU Jiuhe, HU Xiaohui. EFFECT OF TYPICAL FLOCCULANTS ON FORMATION AND ADSORPTION CHARACTERISTICS OF SLUDGE-DERIVED HYDROCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 166-173. doi: 10.13205/j.hjgc.202412020
Citation: PENG Lingzhi, LIU Jia, YANG Yang, TANG Senpei. CONSTRUCTION AND PHOTOCATALYTIC PERFORMANCE OF CARBON-DOPED FLOWER SPHERICAL Bi4O5Br1.87Cl0.13[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 125-133,171. doi: 10.13205/j.hjgc.202305017

CONSTRUCTION AND PHOTOCATALYTIC PERFORMANCE OF CARBON-DOPED FLOWER SPHERICAL Bi4O5Br1.87Cl0.13

doi: 10.13205/j.hjgc.202305017
  • Received Date: 2022-07-15
  • Bismuth halide oxide based photocatalytic materials have made rapid progress in recent years due to their excellent photocatalytic performace. In this project, in order to develop effective visible light responsive BiOX based photocatalyst, carbon-doped micro and nano-flower spherical solid solution (Bi4O5Br1.87Cl0.13) were successfully synthesized by combining the hydrothermal method and annealing treatment, with tetracycline hydrochloride as the chlorine and carbon sources. TEM, SEM, XPS, XRD and other analytical techniques were used to characterize its micro morphology, chemical structure, photoelectrochemical properties, and photocatalytic degradation performance. The results showed that Bi4O5Br1.87Cl0.13 was a spherical morphology of nanosheet assembly, in which the introduction of chlorine and carbon elements induced a high degree of hybridization in the valence and conduction band orbitals, resulting in a certain impurity energy level. This impurity energy level enhanced the absorption of visible light by the catalyst, while providing a channel for charge transport and promoting charge separation. Moreover, Bi4O5Br1.87Cl0.13 had a narrower forbidden bandwidth compared to the unmodified Bi4O5Br2, which meant that a higher electron-hole excitation efficiency obtained in visible light. The Bi4O5Br1.87Cl0.13-300 with a carbon doping of 3.58% (mass fraction) was obtained by annealing at 300 ℃ with the most excellent photocatalytic performance. The degradation of methyl orange (10 mg/L) by Bi4O5Br1.87Cl0.13-300 could reach 88.29% in one hour under the light of 35 W halogen lamp, while the degradation of methyl orange by Bi4O5Br2 under the same conditions was only 28.53%. The stepwise degradation study showed that the excellent photocatalytic degradation performance of Bi4O5Br1.87Cl0.13-300 mainly came from the nanosheet-like multistage structure on the spherical surface, which provided a large number of surface sites involved in the reaction. The present work provided a new reference for the enhancement of the photocatalytic performance of bismuth halide oxide materials.
  • [1]
    张静雯, 李英华. 卤氧化铋光催化剂的改性研究与应用[J]. 硅酸盐通报, 2021, 40(7): 2374-2379.
    [2]
    YANG C Y, WANG Z, LIN T Q, et al. Core-shell nanostructured "Black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping[J]. Journal of the American Chemical Society, 2013, 135(47): 17831.
    [3]
    HE C N, XU L, HUANG W Q, et al. Origin of photocatalytic activity of nitrogen-doped germanium dioxide under visible light from first principles[J]. Materials Science in Semiconductor Processing, 2015, 31: 517-524.
    [4]
    JIANG G H, WANG X H, WEI Z, et al. Photocatalytic properties of hierarchical structures based on Fe-doped BiOBr hollow microspheres[J]. Journal of Materials Chemistry A, 2013, 1(7):2406-2410.
    [5]
    ZHANG X, ZHANG L Z. Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI[J]. The Journal of Physical Chemistry C, 2010, 114(42): 18198-18206.
    [6]
    LIU H, CAO W R, SU Y, et al. Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI[J]. Applied Catalysis B: Environmental, 2012, 111/112: 271-279.
    [7]
    JIANG Z Y, LIU Y Y, JING T, et al. One-pot solvothermal synthesis of S doped BiOCl for solar water oxidation[J]. RSC Advances, 2015, 5(58): 47261-47264.
    [8]
    LI J, CAI L, SHANG J, et al. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis[J]. Adv Mater, 2016, 28(21): 4059-4064.
    [9]
    金晓丽. 富铋基卤氧铋光催化剂的构筑及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2020.
    [10]
    ZHANG H J, LIU L, ZHOU Z. Towards better photocatalysts: first-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light[J]. Phys Chem Chem Phys, 2012, 14(3): 1286-1292.
    [11]
    LIU Y Y, SON W J, LU J B, et al. Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light[J]. Chemistry-A European Journal, 2011.
    [12]
    DONG F, SUN Y J, FU M, et al. Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers[J]. J Hazard Mater, 2012, 219/220: 26-34.
    [13]
    REN K, LIU J, LIANG J, et al. Synthesis of the bismuth oxyhalide solid solutions with tunable band gap and photocatalytic activities[J]. Dalton Trans, 2013, 42(26): 9706-9712.
    [14]
    SHANG J, CHEN T Z, WANG X W, et al. Facile fabrication and enhanced photocatalytic performance: from BiOCl to element-doped BiOCl[J]. Chemical Physics Letters, 2018, 706:483-487.
    [15]
    ZHANG X, WANG C Y, WANG L W, et al. Fabrication of BiOBrxI1-x photocatalysts with tunable visible light catalytic activity by modulating band structures[J]. Sci Rep, 2016, 6: 22800.
    [16]
    YE L Q, LIU J Y, JIANG Z, et al. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142/143: 1-7.
    [17]
    ZHUANG L Z, GE L, YANG Y S, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Adv Mater, 2017, 29(17):1606793.
    [18]
    JIN X L, LV C D, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy, 2019, 64:103955.
    [19]
    TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi (b), 1966, 15(2):627-637.
    [20]
    DAVIS E A, MOTT N F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors[J]. Philosophical Magazine, 1970, 22(179):903-922.
    [21]
    GELDERMAN K, LEE L, DONNE S W. Flat-band potential of a semiconductor: using the Mott-Schottky equation[J]. Journal of Chemical Education, 2007, 84(4): 685-688.
    [22]
    BERANEK R. (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials[J]. Advances in Physical Chemistry, 2011: 1-20.
    [23]
    YANG Y, CHEN Y Y, LI Z H, et al. Homojunction type of carbon nitride as a robust photo-catalyst for reduction conversion of CO2 in water vapor under visible light[J]. Chemical Engineering Journal, 2022, 430(P1):132668.
    [24]
    WANG L X. Proposal for a new class of materials: spin gapless semiconductors[J]. Physical review letters, 2008, 100(15):205-208.
    [25]
    LV C D, CHEN G, ZHOU X, et al. Oxygen-induced Bi5+-self-doped Bi4V2O11 with a p-n homojunction toward promoting the photocatalytic performance[J]. ACS Appl Mater Interfaces, 2017, 9(28): 23748-23755.
    [26]
    IVAN G, G. S K, H. J D, et al. Wavelength-dependent ultrafast charge carrier separation in the WO3/BiVO4 coupled system[J]. ACS Energy Letters, 2017, 2(6):1362-1367.
    [27]
    HUANG W L, ZHU Q S. Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts[J]. Computational Materials Science, 2008, 43(4): 1101-1108.
    [28]
    LIN X P, HUANG T, HUANG F Q, et al. Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl[J]. Journal of physical chemistry B, 2006, 110(48): 24629-24634.
    [29]
    FRIEDMANN D, MENDIVE C, BAHNEMANN D. TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis[J]. Applied Catalysis B: Environmental, 2010, 99(3/4): 398-406.
    [30]
    CHLADKOVA B, EVGENIDOU E, KVITEK L, et al. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers[J]. Environ Sci Pollut Res Int, 2015, 22(21): 16514-16524.
    [31]
    LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3): 735-758.
    [32]
    WANG N N, ZHOU Y, CHEN C H, et al. A g-C3N4 supported graphene oxide/Ag3PO4 composite with remarkably enhanced photocatalytic activity under visible light[J]. Catalysis Communications, 2016, 73: 74-79.
    [33]
    SHAN W J, HU Y, BAI Z G, et al. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 188: 1-12.
    [34]
    SUN J W, BIAN J, LI J D, et al. Efficiently photocatalytic conversion of CO2 on ultrathin metal phthalocyanine/g-C3N4 heterojunctions by promoting charge transfer and CO2 activation[J]. Applied Catalysis B: Environmental, 2020, 277:119199.
    [35]
    MA X M, HAO H M, SHENG W L, et al. Bridging green light photocatalysis over hierarchical Nb2O5 for the selective aerobic oxidation of sulfides[J]. Jouranal of Materials Chemistry A, 2021, 9(4): 2214-2222.
  • Relative Articles

    [1]YANG Yi, ZHAO Rui, ZHENG Zhenze, SHU Qilin, LIU Wei. FLUORESCENT COMPONENTS, MOLECULAR PROPERTIES AND SOURCES OF DOM IN SECONDARY EFFLUENT OF MUNICIPAL SEWAGE TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 66-72. doi: 10.13205/j.hjgc.202412009
    [2]WANG Yihang, FENG Xiaonan, WANG Zongping, YUAN Jianwei, ZHU Zhihuai, LIANG Mu, MA Jie, GUO Gang, WAN Peng, CHEN Zhenbin, ZUO Liang. SCHEDULING OPTIMIZATION OF DOMESTIC WASTE TRANSFER SYSTEMS BASED ON DIGITAL TWINNING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 199-205. doi: 10.13205/j.hjgc.202405025
    [3]WANG Libiao, WANG Xuesong, WU Weifeng, ZHOU Huazhen, ZHENG Jiajun, ZHANG Miaojia. EFFICIENCY ASSESSMENT AND DISPATCH OPTIMIZATION OF WATER PUMP OPERATIONS AT THE HONGPAN WATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 140-145. doi: 10.13205/j.hjgc.202411015
    [4]GUO Xinyu, CHENG Shuhui, LI Zhicheng, HE Wei, KOU Xiaoxia, QIAO Xin, WANG Cong. REGULATION OPTIMIZATION OF TIDAL RIVER GATES FOR WATER ENVIRONMENT IMPROVEMENT IN THE RIVER BASINS:A CASE STUDY ON INDEPENDENT POLDERS' RIVER NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 49-56. doi: 10.13205/j.hjgc.202303007
    [5]LI Teng, HU Jing, SONG Haiwang, QIN Xianxiang, CHENG Lihua, BI Xuejun. INACTIVATION AND REACTIVATION OF ANTIBIOTIC-RESISTANT BACTERIA IN FILTERED SECONDARY EFFLUENT OF WASTEWATER TREATMENT PLANT DURING AND AFTER UV DISINFECTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 14-19,41. doi: 10.13205/j.hjgc.202202003
    [6]PENG Zhouyang, JIN Xi, SANG Wenjiao. OPTIMIZATION OF DESIGN OF TERMINAL FLOW INTERCEPTION AND STORAGE FACILITIES OF COMBINED DRAINAGE SYSTEM BASED ON NSGA-Ⅲ ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 143-149. doi: 10.13205/j.hjgc.202208020
    [7]LI Junyu, LIU Shuming, WU Xue, XIE Tao, JIN Ye. OPTIMIZATION OF URBAN WATER SUPPLY NETWORK BASED ON DYNAMIC PRUNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 226-232,153. doi: 10.13205/j.hjgc.202206029
    [8]GAO Jun-xian, RUAN Zhi-yu, XU Ke-wei, JIANG Hai-dong, ZHANG Li, WANG Yan, ZHENG Kai-kai, LI Ji. CHARACTERISTICS OF OZONE OXIDATION PROCESS ON TREATMENT OF SECONDARY EFFLUENT OF WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 88-92,18. doi: 10.13205/j.hjgc.202007014
  • Cited by

    Periodical cited type(12)

    1. 张建美,朱永茂,谢健强,吕钰楠,梅江雪,蒋兴超. 一株适用于短程反硝化的细菌筛选及其脱氮特性. 工业水处理. 2024(02): 87-94 .
    2. 王莎,李斌,孙江华. COD/N对短程内源反硝化过程中NO和N_2O积累的影响. 渭南师范学院学报. 2024(02): 86-94 .
    3. 马雨晴,王博,李笑迪. 温度与负荷对Anammox菌自富集启动的PDA的影响. 中国环境科学. 2024(03): 1307-1313 .
    4. 谢健强,张建美,吕钰楠,雷抗. 短程反硝化用于污水脱氮的机制、影响因素和工艺研究进展. 工业水处理. 2024(07): 19-28 .
    5. 平彩霞,周鑫,聂裕婷. 硫自养反硝化工艺亚硝酸盐积累研究进展. 工业水处理. 2024(08): 21-28 .
    6. 蒙小俊. 短程反硝化-厌氧氨氧化脱氮工艺研究进展. 工业用水与废水. 2023(01): 6-11+17 .
    7. 范荣桂,关怀远,张玛格. PN/A工艺应用于主流城市污水处理的研究进展. 应用化工. 2023(03): 880-884+891 .
    8. 迟冉,李伟英,温朵. 一株脱氮细菌鉴定及其效果研究. 微生物学杂志. 2023(03): 80-85 .
    9. 李聪,杜睿,彭永臻. 不同聚集形态短程反硝化耦合厌氧氨氧化系统脱氮性能与碳源利用特性. 环境工程. 2023(09): 1-9 . 本站查看
    10. 尤俊豪,单洪涛,宗永臣. 低碳氮比城市污水的高效脱氮工艺与新型外加碳源研究现状. 工业用水与废水. 2022(03): 1-6+22 .
    11. 吴芳磊,贺航运,陈博涵,刘礼祥,李永,杜培坦,陈肖. 低C/N进水城镇污水厂低溶解氧运行效能及微生物变化. 环境工程学报. 2022(08): 2711-2719 .
    12. 蒙小俊,韩勇,黄志贵,龚晓松. Anammox用于主流污水处理的挑战与对策. 环境工程. 2022(10): 203-214 . 本站查看

    Other cited types(14)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 86.0 %META: 86.0 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.0 %其他: 14.0 %其他: 0.8 %其他: 0.8 %上海: 1.2 %上海: 1.2 %东莞: 3.1 %东莞: 3.1 %保定: 0.4 %保定: 0.4 %兰州: 0.4 %兰州: 0.4 %北京: 3.1 %北京: 3.1 %十堰: 2.3 %十堰: 2.3 %南昌: 0.8 %南昌: 0.8 %台州: 0.8 %台州: 0.8 %合肥: 1.6 %合肥: 1.6 %呼和浩特: 0.4 %呼和浩特: 0.4 %嘉兴: 1.2 %嘉兴: 1.2 %大同: 0.8 %大同: 0.8 %天津: 7.0 %天津: 7.0 %宁波: 0.4 %宁波: 0.4 %宣城: 0.4 %宣城: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.8 %常德: 0.8 %广州: 0.8 %广州: 0.8 %弗吉: 1.2 %弗吉: 1.2 %张家口: 3.1 %张家口: 3.1 %成都: 0.8 %成都: 0.8 %扬州: 2.7 %扬州: 2.7 %昆明: 1.2 %昆明: 1.2 %晋城: 0.4 %晋城: 0.4 %杭州: 4.3 %杭州: 4.3 %武威: 0.4 %武威: 0.4 %沈阳: 0.4 %沈阳: 0.4 %淮南: 0.8 %淮南: 0.8 %深圳: 0.4 %深圳: 0.4 %温州: 1.9 %温州: 1.9 %漯河: 5.8 %漯河: 5.8 %石家庄: 1.6 %石家庄: 1.6 %芒廷维尤: 10.1 %芒廷维尤: 10.1 %芝加哥: 2.3 %芝加哥: 2.3 %苏州: 1.2 %苏州: 1.2 %衡阳: 0.8 %衡阳: 0.8 %西宁: 10.1 %西宁: 10.1 %西雅图: 1.2 %西雅图: 1.2 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.2 %运城: 1.2 %连云港: 0.4 %连云港: 0.4 %遵义: 0.4 %遵义: 0.4 %郑州: 1.2 %郑州: 1.2 %重庆: 3.9 %重庆: 3.9 %长沙: 1.6 %长沙: 1.6 %其他其他上海东莞保定兰州北京十堰南昌台州合肥呼和浩特嘉兴大同天津宁波宣城常州常德广州弗吉张家口成都扬州昆明晋城杭州武威沈阳淮南深圳温州漯河石家庄芒廷维尤芝加哥苏州衡阳西宁西雅图贵阳运城连云港遵义郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(2) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return