Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Song-hua, ZHOU Jing, JIN Wen-long, TANG Ming, WU Jin. HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 217-224. doi: 10.13205/j.hjgc.202105030
Citation: PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019

EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE

doi: 10.13205/j.hjgc.202305019
  • Received Date: 2022-04-27
  • In this study, the loess in Shahu Lake was used as a flocculant to explore the water purification effect of flocculation, with diatomite used as a control group. Meanwhile, the purification effect of loess on dissolved organic matter (DOM) in Shahu Lake water was analyzed by synchronous fluorescence spectroscopy in combination with derivative fluorescence, parallel factor analysis and two-dimensional correlation spectroscopy. The results showed that the highest removal rates of TN, TP, CODMn and Chl.a were 28.85%, 51.52%, 24.87% and 42.86%, respectively. Shahu loess with grain sizes of 100, 200 mesh had a better flocculation effect on TP and TN. However, the flocculation effect of diatomite on TN was better than that of the loess. Five fluorescent components were identified in DOM parallel factor analysis (PARAFAC), among which the protein-like component was the dominant one. The loess flocculant had the highest removal effect (56.38%) on the protein-like fluorescent component (C5). The second derivative fluorescence could identify six fluorescence peaks. Among them, the removal rates of protein-, fulvic- and humic-like substances were 48.54%, 16.45% and 1.43%, respectively. The results of the two-dimensional correlation spectroscopy analysis showed that the preferential sequence of removal of the fluorescent components by loess flocculant followed the order of 285 nm→336 nm→369 nm, suggesting that protein-like fluorescent component was removed preferentially. Shahu loess can be used as a flocculant to purify Shahu Lake water.
  • [1]
    陈珂, 张健, 李娇, 等. 宁夏平罗沙湖水体富营养化变化特征分析及防治对策[J]. 宁夏农林科技, 2016, 57(11): 56-58.
    [2]
    朱明莹, 于洪贤, 马成学, 等.沙湖浮游植物多样性分析及水质评价[J]. 水产学杂志, 2015, 28(3):39-43.
    [3]
    孙永军, 吴卫杰, 肖雪峰, 等. 絮凝法去除水中藻类研究进展[J]. 化学研究与应用, 2017, 29(2): 153-159.
    [4]
    李靖. 改性黏土对几种藻华生物的去除作用及其生态环境效应[D]. 北京: 中国科学院大学, 2017.
    [5]
    晏全香, 袁继祖. 黏土矿物处理水体富营养化藻类的研究进展[J]. 污染防治技术, 2008, 21(4): 26-29.
    [6]
    PAN G, ZHANG M M, CHEN H, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅰ. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution, 2006, 141(2): 195-200.
    [7]
    PARK T G, LIM W A, PARK Y T, et al. Economic impact, management and mitigation of red tides in Korea[J]. Harmful Algae, 2013, 30, Supplement 1: 131-143.
    [8]
    CONLEY D J, PAERL H W, ROBERT W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323: 1014-1015.
    [9]
    马健荣, 邓建明, 秦伯强, 等. 湖泊蓝藻水华发生机理研究进展[J]. 生态学报, 2013, 33(10): 3020-3030.
    [10]
    PAERL H W, XU H, MC CARTHY M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N&P) management strategy[J]. Water Research, 2011, 45: 1973-1983.
    [11]
    秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华"暴发"的动态特征及其机制[J]. 科学通报, 2016, 61(7): 759-770.
    [12]
    COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51: 325-346.
    [13]
    STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6: 572-579.
    [14]
    YUAN D H, ZHAO Y X, GUO X J, et al. Impact of hydrophyte decomposition on the changes and characteristics of dissolved organic matter in lake water[J]. Ecological Indicators, 2020, 116: 106482.
    [15]
    NODA I, OZAKI Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. London: John Wiley & Sons, 2005.
    [16]
    蔡若宇. Tanfloc改性硅藻土絮凝除藻效果及机理研究[D]. 赣州: 江西理工大学, 2021.
    [17]
    中华人民共和国环境保护部. 水质总氮的测定: 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012.
    [18]
    国家环境保护局. 水质总磷的测定: 钼酸铵分光光度法: GB/T 11893—1989[S]. 北京: 中国环境科学出版社, 1989.
    [19]
    国家环境保护局. 水质高锰酸盐指数的测定: GB/T 11892—1989[S]. 北京:中国标准出版社, 1991.
    [20]
    徐彩平, 刘霞, 陈宇炜. 浮游植物叶绿素a浓度测定方法的比较研究[J]. 生态与农村环境学报, 2013, 29(4): 438-442.
    [21]
    张哲海. 玄武湖蓝藻水华应急治理成效分析[J]. 污染防治技术, 2006, 19(5): 56-59.
    [22]
    刘恋. 改性粘土对城市富营养化水体中藻类的絮凝去除研究[D].广州: 华南理工大学, 2010.
    [23]
    梅卓华, 张哲海, 赵春霞, 等. 南京玄武湖蓝藻水华治理后水质和浮游植物的动态变化[J]. 湖泊科学, 2010, 22(1):44-48.
    [24]
    GUO X J, PENG Y Y, LI N X, et al. Effect of biochar-derived DOM on the interaction between Cu(Ⅱ) and biochar prepared at different pyrolysis temperatures[J]. Journal Hazardous Materials, 2021, 421: 126739.
    [25]
    YUAN D H, WANG H T, AN Y C, et al. Insight into the binding properties of carbamazepine onto dissolved organic matter using spectroscopic techniques during grassy swale treatment[J]. Ecotoxicology and Environmental Safety, 2019, 173: 444-451.
    [26]
    杨艳. 三峡库区消落区土壤溶解有机质荧光特征研究[D]. 重庆: 重庆大学, 2010.
    [27]
    郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84.
    [28]
    HUR J, LEE B. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83: 1603-1611.
    [29]
    朱淮武. 有机分子结构波普解析[M]. 北京: 化学工业出版社, 2005.
    [30]
    GUO X J, HE X S, LI C W, et al. The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV-vis and fluorescence spectra combined with two-dimensional correlation analysis[J]. Journal Hazardous Materials, 2019, 365: 457-466.
  • Relative Articles

    [1]LI Zishan, HU Zhiwen, MEI Chuang, BAI Jinjing, ZENG Yan, XIAO Rongbo, WANG Peng, HUANG Fei. EFFECT OF COMBINATION OF RICE STRAW BIOCHAR AND BACILLUS CEREUS ON TRANSFORMATION OF SOIL HEAVY METAL SPECIATIONS AND MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 165-176. doi: 10.13205/j.hjgc.202410020
    [2]ZHANG Dong, LONG Jun, YANG Wei, LI Long, CHEN Renpeng. SUBSTRATE AMELIORATION OF FLUORITE-TYPE LEAD-ZINC TAILINGS AND ITS APPLICATION IN MINE RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 156-165. doi: 10.13205/j.hjgc.202302021
    [3]LIU Jun, PAN Tianqi, ZHAO Huihui, GUO Yan, CHEN Guanyi, HOU Li'an. A MODEL OF CARBON EMISSION REDUCTION CALCULATION FOR AEROBIC REMEDIATION PROCESS IN MSW LANDFILLS BASED ON PRINCIPAL COMPONENT ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 133-139. doi: 10.13205/j.hjgc.202309016
    [4]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [5]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [6]CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015
    [7]LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018
    [8]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [9]ZHANG Tengyuan, FENG Junxiao, FENG Long. SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 113-119. doi: 10.13205/j.hjgc.202202018
    [10]CAO Xiuqin, LIU Feng, CHAI Lianlian, ZHU Kaijin, TAN Junhua. RESEARCH PROGRESS ON PREPARATION OF SLUDGE BASED BIOCHAR AND ITS EFFECT ON SOIL ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 203-211. doi: 10.13205/j.hjgc.202203030
    [11]YE Zhao-yong, YANG Yu, HOU Li-an. HOTSPOTS AND TRENDS OF GROUNDWATER RELATED RESEARCHES NEAR LANDFILLS:VISUAL ANALYSIS BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 65-71. doi: 10.13205/j.hjgc.202106011
    [12]HUANG Jun-xi, YAN Xing, LEI Fang, CEN Yu-ming, HUO Ying-yi, XIAO Yue-qi, ZHONG Shi-cong. IMPROVEMENT OF BIOLOGICAL FERTILIZER EFFICIENCY OF SLUDGE COMPOST PRODUCTS BY ADDING AUXILIARY MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 142-147. doi: 10.13205/j.hjgc.202103020
    [13]XU Mei-li, CHEN Yong-guang, XIAO Rong-bo, MEI Chuang, DAI Wei-jie, WANG Peng, HUANG Fei. PROGRESS IN INFLUENTIAL MECHANISMS OF BIOCHAR ON AVAILABLE HEAVY METALS IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 165-172,226. doi: 10.13205/j.hjgc.202108023
    [14]LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027
    [15]ZOU Chen-yang, ZHANG Shuang-xi, CHEN Fang. DISCUSSION ON COMPREHENSIVE INSPECTION METHODS OF VERTICAL CUT-OFF CURTAIN FOR CITY LANDFILL SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 194-199. doi: 10.13205/j.hjgc.202009031
    [16]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [17]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [18]WU Rui-ping. EFFECT OF PYROLYSIS TEMPERATURE ON BIOCHAR ENHANCED TREATMENT OF CADMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 241-246. doi: 10.13205/j.hjgc.202009039
    [20]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
  • Cited by

    Periodical cited type(9)

    1. 金桂琴,黄俊雄,王军红,宋倩,李文忠,郭浩然. 基于水盐平衡的官厅水库氟化物达标途径研究. 环境工程. 2025(02): 148-156 . 本站查看
    2. 谢素娇,陆汉明,王宇峰,廖燕梅,韦泓辛,韦福孙. 港北区农村饮用水健康风险评价. 医学动物防制. 2024(08): 761-765 .
    3. 汪晴,麦志远,赵燕. 珠海西部地区集中式饮用水源地重金属含量特征及健康风险评价. 山东化工. 2024(17): 274-278 .
    4. 梁川,陈刚,郭静,孙智杰,陈志宇,蔡爱民,王辛,江越潇,李寅. 鄂东丘陵山区地下水饮用水源地水质与健康风险评价. 上海国土资源. 2024(04): 184-189 .
    5. 王巍. 兰州市典型地区空气可吸入颗粒物中重金属污染水平及健康风险精细化评估. 环境生态学. 2022(04): 28-32 .
    6. 李丽娟,张东伟,杨丽婷,张垚. 丹江口水库水体8种重金属健康风险评估. 四川环境. 2022(04): 246-251 .
    7. 林正江,高东东,肖杰,陈亚平,董坤,韦娅俪. 基于序贯指示模拟的中江县饮用水源地空间概率健康风险评价. 环境科学导刊. 2022(05): 70-76 .
    8. 赵璐,亓靓,薛莲,谭培功,刘文欣,刘岳峰. 山东某沿海城市集中式饮用水水源水质及健康风险评价. 环境监控与预警. 2021(05): 116-123 .
    9. 张建峰,张琪,郑瑞芬,屈国平,许向云,王丽平. 2015-2020年呼和浩特市饮用水卫生状况分析. 疾病监测与控制. 2021(05): 355-358 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 81.0 %META: 81.0 %PDF: 3.2 %PDF: 3.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.2 %其他: 17.2 %China: 0.2 %China: 0.2 %North Point: 0.2 %North Point: 0.2 %[]: 0.2 %[]: 0.2 %上海: 3.4 %上海: 3.4 %东京: 0.2 %东京: 0.2 %东莞: 1.6 %东莞: 1.6 %临汾: 0.2 %临汾: 0.2 %丽水: 0.2 %丽水: 0.2 %乐山: 0.2 %乐山: 0.2 %伦敦: 0.2 %伦敦: 0.2 %保定: 0.2 %保定: 0.2 %兰州: 0.2 %兰州: 0.2 %北京: 4.0 %北京: 4.0 %南京: 3.8 %南京: 3.8 %南昌: 0.4 %南昌: 0.4 %台州: 0.8 %台州: 0.8 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %天津: 1.4 %天津: 1.4 %宁波: 0.2 %宁波: 0.2 %安康: 0.6 %安康: 0.6 %宣城: 0.2 %宣城: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.6 %广州: 0.6 %开封: 1.0 %开封: 1.0 %张家口: 0.6 %张家口: 0.6 %徐州: 0.2 %徐州: 0.2 %成都: 1.4 %成都: 1.4 %新乡: 0.2 %新乡: 0.2 %日照: 0.2 %日照: 0.2 %昆明: 0.6 %昆明: 0.6 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.2 %杭州: 1.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.8 %武汉: 1.8 %汕头: 0.4 %汕头: 0.4 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.2 %沧州: 0.2 %济源: 0.4 %济源: 0.4 %淄博: 0.2 %淄博: 0.2 %温州: 0.2 %温州: 0.2 %湘潭: 0.2 %湘潭: 0.2 %滨州: 0.4 %滨州: 0.4 %漯河: 0.6 %漯河: 0.6 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 1.0 %福州: 1.0 %芒廷维尤: 38.0 %芒廷维尤: 38.0 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.2 %苏州: 0.2 %衢州: 0.6 %衢州: 0.6 %西宁: 1.4 %西宁: 1.4 %西安: 1.4 %西安: 1.4 %诺伊达: 0.4 %诺伊达: 0.4 %贵阳: 0.2 %贵阳: 0.2 %资阳: 0.2 %资阳: 0.2 %运城: 1.8 %运城: 1.8 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 1.4 %重庆: 1.4 %铁岭: 0.2 %铁岭: 0.2 %银川: 0.4 %银川: 0.4 %长沙: 0.6 %长沙: 0.6 %长治: 0.2 %长治: 0.2 %阿拉尔: 0.2 %阿拉尔: 0.2 %青岛: 0.2 %青岛: 0.2 %香港: 1.0 %香港: 1.0 %其他ChinaNorth Point[]上海东京东莞临汾丽水乐山伦敦保定兰州北京南京南昌台州合肥哈尔滨天津宁波安康宣城常德广州开封张家口徐州成都新乡日照昆明晋城朝阳杭州桂林武汉汕头沈阳沧州济源淄博温州湘潭滨州漯河烟台石家庄福州芒廷维尤芝加哥苏州衢州西宁西安诺伊达贵阳资阳运城连云港遵义郑州重庆铁岭银川长沙长治阿拉尔青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(10) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return