Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yu-long, ZHANG Zhi-feng, ZHANG Li, ZHANG Zhe, QIN Lu, CHAI Guo-dong, ZHENG Xing, WANG Dong-qi. EFFECT OF INFLUENT CONDITIONS ON PERFORMANCE AND MICROORGANISMS IN THE SIDE-STREAM ACTIVATED SLUDGE HYDROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 146-151,158. doi: 10.13205/j.hjgc.202205021
Citation: PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019

EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE

doi: 10.13205/j.hjgc.202305019
  • Received Date: 2022-04-27
  • In this study, the loess in Shahu Lake was used as a flocculant to explore the water purification effect of flocculation, with diatomite used as a control group. Meanwhile, the purification effect of loess on dissolved organic matter (DOM) in Shahu Lake water was analyzed by synchronous fluorescence spectroscopy in combination with derivative fluorescence, parallel factor analysis and two-dimensional correlation spectroscopy. The results showed that the highest removal rates of TN, TP, CODMn and Chl.a were 28.85%, 51.52%, 24.87% and 42.86%, respectively. Shahu loess with grain sizes of 100, 200 mesh had a better flocculation effect on TP and TN. However, the flocculation effect of diatomite on TN was better than that of the loess. Five fluorescent components were identified in DOM parallel factor analysis (PARAFAC), among which the protein-like component was the dominant one. The loess flocculant had the highest removal effect (56.38%) on the protein-like fluorescent component (C5). The second derivative fluorescence could identify six fluorescence peaks. Among them, the removal rates of protein-, fulvic- and humic-like substances were 48.54%, 16.45% and 1.43%, respectively. The results of the two-dimensional correlation spectroscopy analysis showed that the preferential sequence of removal of the fluorescent components by loess flocculant followed the order of 285 nm→336 nm→369 nm, suggesting that protein-like fluorescent component was removed preferentially. Shahu loess can be used as a flocculant to purify Shahu Lake water.
  • [1]
    陈珂, 张健, 李娇, 等. 宁夏平罗沙湖水体富营养化变化特征分析及防治对策[J]. 宁夏农林科技, 2016, 57(11): 56-58.
    [2]
    朱明莹, 于洪贤, 马成学, 等.沙湖浮游植物多样性分析及水质评价[J]. 水产学杂志, 2015, 28(3):39-43.
    [3]
    孙永军, 吴卫杰, 肖雪峰, 等. 絮凝法去除水中藻类研究进展[J]. 化学研究与应用, 2017, 29(2): 153-159.
    [4]
    李靖. 改性黏土对几种藻华生物的去除作用及其生态环境效应[D]. 北京: 中国科学院大学, 2017.
    [5]
    晏全香, 袁继祖. 黏土矿物处理水体富营养化藻类的研究进展[J]. 污染防治技术, 2008, 21(4): 26-29.
    [6]
    PAN G, ZHANG M M, CHEN H, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅰ. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution, 2006, 141(2): 195-200.
    [7]
    PARK T G, LIM W A, PARK Y T, et al. Economic impact, management and mitigation of red tides in Korea[J]. Harmful Algae, 2013, 30, Supplement 1: 131-143.
    [8]
    CONLEY D J, PAERL H W, ROBERT W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323: 1014-1015.
    [9]
    马健荣, 邓建明, 秦伯强, 等. 湖泊蓝藻水华发生机理研究进展[J]. 生态学报, 2013, 33(10): 3020-3030.
    [10]
    PAERL H W, XU H, MC CARTHY M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N&P) management strategy[J]. Water Research, 2011, 45: 1973-1983.
    [11]
    秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华"暴发"的动态特征及其机制[J]. 科学通报, 2016, 61(7): 759-770.
    [12]
    COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51: 325-346.
    [13]
    STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6: 572-579.
    [14]
    YUAN D H, ZHAO Y X, GUO X J, et al. Impact of hydrophyte decomposition on the changes and characteristics of dissolved organic matter in lake water[J]. Ecological Indicators, 2020, 116: 106482.
    [15]
    NODA I, OZAKI Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. London: John Wiley & Sons, 2005.
    [16]
    蔡若宇. Tanfloc改性硅藻土絮凝除藻效果及机理研究[D]. 赣州: 江西理工大学, 2021.
    [17]
    中华人民共和国环境保护部. 水质总氮的测定: 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012.
    [18]
    国家环境保护局. 水质总磷的测定: 钼酸铵分光光度法: GB/T 11893—1989[S]. 北京: 中国环境科学出版社, 1989.
    [19]
    国家环境保护局. 水质高锰酸盐指数的测定: GB/T 11892—1989[S]. 北京:中国标准出版社, 1991.
    [20]
    徐彩平, 刘霞, 陈宇炜. 浮游植物叶绿素a浓度测定方法的比较研究[J]. 生态与农村环境学报, 2013, 29(4): 438-442.
    [21]
    张哲海. 玄武湖蓝藻水华应急治理成效分析[J]. 污染防治技术, 2006, 19(5): 56-59.
    [22]
    刘恋. 改性粘土对城市富营养化水体中藻类的絮凝去除研究[D].广州: 华南理工大学, 2010.
    [23]
    梅卓华, 张哲海, 赵春霞, 等. 南京玄武湖蓝藻水华治理后水质和浮游植物的动态变化[J]. 湖泊科学, 2010, 22(1):44-48.
    [24]
    GUO X J, PENG Y Y, LI N X, et al. Effect of biochar-derived DOM on the interaction between Cu(Ⅱ) and biochar prepared at different pyrolysis temperatures[J]. Journal Hazardous Materials, 2021, 421: 126739.
    [25]
    YUAN D H, WANG H T, AN Y C, et al. Insight into the binding properties of carbamazepine onto dissolved organic matter using spectroscopic techniques during grassy swale treatment[J]. Ecotoxicology and Environmental Safety, 2019, 173: 444-451.
    [26]
    杨艳. 三峡库区消落区土壤溶解有机质荧光特征研究[D]. 重庆: 重庆大学, 2010.
    [27]
    郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84.
    [28]
    HUR J, LEE B. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83: 1603-1611.
    [29]
    朱淮武. 有机分子结构波普解析[M]. 北京: 化学工业出版社, 2005.
    [30]
    GUO X J, HE X S, LI C W, et al. The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV-vis and fluorescence spectra combined with two-dimensional correlation analysis[J]. Journal Hazardous Materials, 2019, 365: 457-466.
  • Relative Articles

    [1]ZHAO Yong, HAO Guizhen, XU Li, XIONG Xiaoying, ZHANG Xuanmo, WANG Jiawei. ENHANCED NITROGEN REMOVAL BY AEROBIC GRANULAR SLUDGE AND EVOLUTION OF MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 135-143. doi: 10.13205/j.hjgc.202407015
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [4]HUANG Wenhui, GAO Jiaqi, LI Xiang, HUANG Yong, XU Peiling, YE Jiahong. EFFECT OF NITROGEN LOAD ON NOB INHIBITION IN PARTIAL NITROSATED ACTIVATED SLUDGE SYSTEM UNDER MAINSTREAM CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 25-32. doi: 10.13205/j.hjgc.202403003
    [5]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [6]LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011
    [7]YU Junxia, CHEN Shuangrong, LIU Lingyan, LI Yingmei, LU Yifeng, MA Lan. PURIFICATION EFFECT OF TOTAL NITROGEN IN LOW-POLLUTED WATER BY A COMPOSITE CONSTRUCTED WETLAND SYSTEM AND ITS MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 13-20. doi: 10.13205/j.hjgc.202201003
    [8]XIE Mingde, FENG Mei, TANG Yiming, YI Xiaoying, LIU Dan. ANALYSIS ON MICROBIAL COMMUNITY STRUCTURES AND DIVERSITY IN AGED REFUSE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 42-46. doi: 10.13205/j.hjgc.202202007
    [9]LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006
    [10]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [11]ZHANG Meng, ZHAO Yani, ZHANG Liling, WU Jingya, LI Shuping, ZHU Guangcan, SUN Liwei. COMPARISON OF CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE IN SEWAGE TREATMENT PLANTS OF HIGH ALTITUDE AREA AND LOW ALTITUDE AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 66-73. doi: 10.13205/j.hjgc.202203011
    [12]HAN Ya-lin, WANG Fu-hao, WANG Qun, LI Ting, SHE Zong-lian. EFFECT OF OPERATIONAL MODE ON NITROGEN REMOVAL AND MICROBIAL CUMMUNITY IN PROCESS OF SIMULTANEOUS PARTIAL NITRIFICATION AND DENITRIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 51-57,17. doi: 10.13205/j.hjgc.202101007
    [13]GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
    [14]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [15]LI Yong, YUAN Hui-zhou, KE Shui-zhou, ZHU Liang, LI Zhan-peng. EFFECTS OF MICROBIAL CARRIERS ON PERFORMANCE AND MICROBIAL COMMUNITY STRUCTURE OF MBBR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 100-106. doi: 10.13205/j.hjgc.202112015
    [16]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [17]WANG Kun, KE Shui-zhou, YUAN Hui-zhou, ZHU Jia, LI Jia-wan. EFFECT OF AMMONIA-NITROGEN CONCENTRATION ON MICROBIAL COMMUNITY STRUCTURE IN A MBBR PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 119-125. doi: 10.13205/j.hjgc.202009020
    [18]YIN Ying, CHI Zi-fang, HUANG Hua-zheng, WANG Wen-jing. EFFECTS OF HYDROGEN AND NITROGEN ON ANAEROBIC METHANE DEGRADATION COURSE AND MICROBIAL DIVERSITY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 191-195. doi: 10.13205/j.hjgc.202005033
  • Cited by

    Periodical cited type(1)

    1. 王东琦,秦璐. 侧流强化生物除磷工艺研究进展. 水处理技术. 2025(02): 14-21 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.1 %FULLTEXT: 10.1 %META: 85.0 %META: 85.0 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.4 %其他: 13.4 %其他: 0.8 %其他: 0.8 %Gwynn Oak: 0.8 %Gwynn Oak: 0.8 %Malvern: 0.4 %Malvern: 0.4 %Nahant: 0.4 %Nahant: 0.4 %Pasadena: 1.2 %Pasadena: 1.2 %[]: 0.4 %[]: 0.4 %上海: 2.8 %上海: 2.8 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %佛山: 1.6 %佛山: 1.6 %保定: 0.4 %保定: 0.4 %北京: 2.0 %北京: 2.0 %南京: 0.4 %南京: 0.4 %台州: 0.4 %台州: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %圣地亚哥: 0.8 %圣地亚哥: 0.8 %天津: 0.8 %天津: 0.8 %宣城: 1.2 %宣城: 1.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %山景城: 0.4 %山景城: 0.4 %巴黎: 0.8 %巴黎: 0.8 %常德: 0.4 %常德: 0.4 %广州: 0.8 %广州: 0.8 %张家口: 1.2 %张家口: 1.2 %徐州: 0.4 %徐州: 0.4 %成都: 1.6 %成都: 1.6 %扬州: 0.4 %扬州: 0.4 %拉斯维加斯: 0.4 %拉斯维加斯: 0.4 %无锡: 0.8 %无锡: 0.8 %昆明: 0.4 %昆明: 0.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 2.0 %杭州: 2.0 %格兰特县: 1.2 %格兰特县: 1.2 %武汉: 1.2 %武汉: 1.2 %济南: 0.8 %济南: 0.8 %济源: 0.8 %济源: 0.8 %深圳: 0.4 %深圳: 0.4 %湖州: 0.8 %湖州: 0.8 %漯河: 2.0 %漯河: 2.0 %潍坊: 0.4 %潍坊: 0.4 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.8 %福州: 0.8 %芒廷维尤: 27.9 %芒廷维尤: 27.9 %芝加哥: 1.6 %芝加哥: 1.6 %蚌埠: 0.4 %蚌埠: 0.4 %衢州: 0.8 %衢州: 0.8 %西宁: 6.9 %西宁: 6.9 %西安: 2.4 %西安: 2.4 %贵阳: 0.8 %贵阳: 0.8 %运城: 3.2 %运城: 3.2 %遵义: 0.4 %遵义: 0.4 %郑州: 2.8 %郑州: 2.8 %鄂尔多斯: 0.8 %鄂尔多斯: 0.8 %重庆: 0.4 %重庆: 0.4 %长沙: 0.8 %长沙: 0.8 %长治: 0.4 %长治: 0.4 %马鞍山: 0.4 %马鞍山: 0.4 %其他其他Gwynn OakMalvernNahantPasadena[]上海东莞临汾佛山保定北京南京台州哈尔滨圣地亚哥天津宣城密蘇里城山景城巴黎常德广州张家口徐州成都扬州拉斯维加斯无锡昆明晋城朝阳杭州格兰特县武汉济南济源深圳湖州漯河潍坊焦作石家庄福州芒廷维尤芝加哥蚌埠衢州西宁西安贵阳运城遵义郑州鄂尔多斯重庆长沙长治马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(10) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return