Citation: | LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022 |
[1] |
HORN A L, RUEDA F, HORMANN G, et al. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands:an overview on current concepts, deficits, and future tasks[J]. Physics and Chemistry of the Earth, 2004, 29(11/12): 725-737.
|
[2] |
刘东君, 邹志红. 最优加权组合预测法在水质预测中的应用研究[J]. 环境科学学报, 2012, 32(12): 3128-3132.
|
[3] |
李娜, 李勇, 冯家成, 等. 太湖水体Chl-a预测模型ARIMA的构建及应用优化[J]. 环境科学, 2021, 42(5): 2223-2231.
|
[4] |
曾一川, 曾会国, 袁伟皓, 等. 长江口入海通道水质综合分析与模型预测[J]. 环境工程, 2022, 40(5): 95-102
,108.
|
[5] |
GUO T, HE W, JIANG Z L, et al. An improved LSSVM model for intelligent prediction of the daily water level[J]. Energies, 2019, 12(1): 112.
|
[6] |
刘世存, 杨薇, 田凯, 等. 基于多层全连接神经网络的白洋淀水质预测[J]. 农业环境科学学报, 2020, 39(6): 1283-1292.
|
[7] |
刘攀, 郑雅莲, 谢康, 等. 水文水资源领域深度学习研究进展综述[J]. 人民长江, 2021, 52(10): 76-83.
|
[8] |
HUAN J, CHEN B, XU X G, et al. River dissolved oxygen prediction based on Random Forest and LSTM[J]. Applied Engineering in Agriculture, 2021, 37(5): 901-910.
|
[9] |
董泉汐. 基于深度学习的水环境时间序列预测方法研究[D]. 北京: 北京工业大学, 2020.
|
[10] |
张贻婷, 李天宏. 基于长短时记忆神经网络的河流水质预测研究[J]. 环境科学与技术, 2021, 44(8): 163-169.
|
[11] |
BARZEGAR R, AALAMI M T, ADAMOWSKI J. Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 415-433.
|
[12] |
YANG Y R, XIONG Q Y, WU C, et al. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism[J]. Environmental Science and Pollution Research, 2021, 28(39): 55129-55139.
|
[13] |
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[C]. arXiv:1803.01271, 2018.
|
[14] |
李荆, 刘钰, 邹磊. 基于时空建模的动态图卷积神经网络[J]. 北京大学学报(自然科学版), 2021, 57(4): 605-613.
|
[15] |
ZHANG Y F, THORBURN P J, FITCH P. Multi-task temporal convolutional network for predicting water quality sensor data[C]//International Conference on Neural Information Processing, Springer, 2019: 122-130.
|
[16] |
FU Y X, HU Z H, ZHAO Y C, et al. A long-term water quality prediction method based on the temporal convolutional network in smart mariculture[J]. Water, 2021, 13(20): 2907.
|
[17] |
LI W S, WEI Y G, AN D, et al. LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network[J].Environmental Science and Pollution Research, 2022, 29(26): 39545-39556.
|
[18] |
SHIH S Y, SUN F K, LEE H Y. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108(8/9): 1421-1441.
|
[19] |
崔鸿雁, 徐帅, 张利锋, 等. 机器学习中的特征选择方法研究及展望[J]. 北京邮电大学学报, 2018, 41(1): 1-12.
|
[20] |
张阳, 冼慧婷, 赵志杰. 基于空间相关性和神经网络模型的实时河流水质预测模型[J].北京大学学报(自然科学版), 2022, 58(2): 337-344.
|
[21] |
SCHOBER P, BOER C, SCHWARTE L A. Correlation coefficients: appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126(5): 1763-1768.
|
[22] |
PANTISKAS L, VERSTOEP K, BAL H. Interpretable multivariate time series forecasting with temporal attention convolutional neural networks[C]//IEEE Symposium Series on Computational Intelligence, 2020: 1687-1694.
|
[23] |
ZHAI N J, ZHOU X F. Temperature prediction of heating furnace based on deep transfer learning[J]. Sensors, 2020, 20(17): 4676-4702.
|
[24] |
WAN R Z, MEI S P, WANG J, et al. Multivariate temporal convolutional network: a deep neural networks approach for multivariate time series forecasting[J]. Electronics, 2019, 8(8): 876-893.
|
[25] |
ZHOU X H, WANG J P, CAO X K, et al. Simulation of future dissolved oxygen distribution in pond culture based on sliding window-temporal convolutional network and trend surface analysis[J]. Aquacultural Engineering, 2021, 95: 102200.
|
[26] |
王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884-1892.
|
[27] |
SONG C G, YAO L H, HUA C Y, et al. A novel hybrid model for water quality prediction based on synchrosqueezed wavelet transform technique and improved long short-term memory[J]. Journal of Hydrology, 2021, 603(A): 126879.
|
[28] |
李光, 吴祈宗. 基于结论一致的综合评价数据标准化研究[J]. 数学的实践与认识, 2011, 41(3): 72-77.
|
[29] |
LIU Y Q, ZHANG Q, SONG L H, et al. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture, 2019, 165: 104964.
|
[30] |
ZHOU J, WANG Y Y, XIAO F, et al. Water quality prediction method based on IGRA and LSTM[J]. Water, 2018, 10(9): 1148.
|
[31] |
许佳辉, 王敬昌, 陈岭, 等. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
|
[32] |
陈海涵, 吴国栋, 李景霞, 等. 基于注意力机制的深度学习推荐研究进展[J]. 计算机工程与科学, 2021, 43(2): 370-380.
|
[33] |
王竹荣, 薛伟, 牛亚邦, 等. 基于注意力机制的泊位占有率预测模型研究[J]. 通信学报, 2020, 41(12): 182-192.
|
[1] | JIANG Zixuan, ZHANG Lanxin, LI Tianyuan, ZHU Enbin, ZHU Fuhe, WEN Zongguo, ZHANG Liping. Analysis of carbon footprint and deep decarbonization potential of recycled polyester filament from waste PET bottles[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 12-20. doi: 10.13205/j.hjgc.202501002 |
[2] | WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016 |
[3] | YE Ning, LU Hao, SHI Chen, LÜ Yizheng, QIAN Yisen, TIAN Jinping, ZHANG Suyi, HU Yongqi, LEI Xiangyun, CHEN Lüjun. UNCOVERING LIFE CYCLE ENVIRONMENTAL IMPACTS OF NEW PROCESSES ON RESOURCES AND ENERGY RECOVERY OF BAIJIU DISTILLER’S GRAINS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 135-143. doi: 10.13205/j.hjgc.202401018 |
[4] | LI Si, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. CARBON NEUTRAL POTENTIAL OF WHOLE PROCESS OF CO-DIGESTION OF FOOD WASTE AND SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 90-98. doi: 10.13205/j.hjgc.202411010 |
[5] | SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005 |
[6] | WANG Tao, YUE Bo, MENG Bangbang, LIU Bo, GAO Hong. A LIFE CYCLE ASSESSMENT OF SECONDARY COPPER PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 225-232. doi: 10.13205/j.hjgc.202407025 |
[7] | LIU Jun, PAN Tianqi, ZHAO Huihui, GUO Yan, CHEN Guanyi, HOU Li'an. A MODEL OF CARBON EMISSION REDUCTION CALCULATION FOR AEROBIC REMEDIATION PROCESS IN MSW LANDFILLS BASED ON PRINCIPAL COMPONENT ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 133-139. doi: 10.13205/j.hjgc.202309016 |
[8] | WU Cuihua, YU Xiaohua, GAO Junzheng, YAN Haochun, LU Yintao, YAO Hong. CARBON EMISSION ACCOUNTING AND REDUCTION ANALYSIS OF WASTE COLLABORATIVE DISPOSAL IN TYPICAL CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 30-36,60. doi: 10.13205/j.hjgc.202307005 |
[9] | FU Bin, XU Ping. EXAMPLE ANALYSIS OF CARBON EMISSION STRUCTURE OF RESIDENTIAL WATER SYSTEMS AND THEIR REDUCTION POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 178-184,194. doi: 10.13205/j.hjgc.202304025 |
[10] | LIAO Chengfeng, LIU Yuchen, TANG Yuting, TANG Jiehong, MA Xiaoqian. LIFE CYCLE ASSESSMENT AND TECHNO-ECONOMIC ANALYSIS OF PRODUCING AMMONIA BY ALGAL BIOMASS GASIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 187-194. doi: 10.13205/j.hjgc.202305025 |
[11] | LIAO Ziying, ZHANG Huanjun, HAN Shuguang, PAN Zhengguo, LI Yi. LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 143-150. doi: 10.13205/j.hjgc.202306019 |
[12] | LI Wei, CHEN Gang, CAO Taibo, YANG Fangsheng, CHEN Kunyang, WU Huanyu. CARBON EMISSION INTENSITY AND CARBON REDUCTION POTENTIAL IN RECYCLING AND DISPOSAL OF SUBWAY-RELATED SHIELD MUCK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 53-60. doi: 10.13205/j.hjgc.202307008 |
[13] | ZHANG Jiwen, XU Zunzhu, ZHANG Yuwei, CHEN Yuqi, JIN Xiaoxian, LIU Dong, LU Zhaoyang. LIFE CYCLE ASSESSMENT OF COORDINATED TREATMENT OF WASTE GAS POLLUTION AND CARBON REDUCTION IN ANAEROBIC POND IN A PHARMACEUTICAL FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 192-201. doi: 10.13205/j.hjgc.202303026 |
[14] | WANG Lin, YANG Muyan, GAO Yuqiang. CALCULATION AND ANALYSIS OF CARBON EMISSION IN CONSTRUCTION STAGE OF LOESS TUNNEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013 |
[15] | CHEN Kunyang, WANG Jiayuan, YU Bo, DUAN Huabo, WU Huanyu. ENVIRONMENTAL IMPACT EVALUATION OF RESIDUAL MUD FROM SUBWAY ENGINEERING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 191-198. doi: 10.13205/j.hjgc.202202029 |
[16] | SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027 |
[17] | XU Xiaozhu, ZHANG Yun, GAO Qiufeng, XU Yurong, WANG Zhanbo. LIFE CYCLE ASSESSMENT OF HYDRODESULFURIZATION WASTE METAL CATALYST RECOVERY PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 185-190. doi: 10.13205/j.hjgc.202208026 |
[18] | XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027 |
[19] | LIU Yu-tong, ZHANG Yun, HOU Hao-chen, GAO Qiu-feng, XU Xiao-zhu. LIFE CYCLE ASSESSMENT OF HIGH PURITY MAGNESIUM PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 187-191. doi: 10.13205/j.hjgc.202106028 |
[20] | CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027 |