Citation: | LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022 |
[1] |
HORN A L, RUEDA F, HORMANN G, et al. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands:an overview on current concepts, deficits, and future tasks[J]. Physics and Chemistry of the Earth, 2004, 29(11/12): 725-737.
|
[2] |
刘东君, 邹志红. 最优加权组合预测法在水质预测中的应用研究[J]. 环境科学学报, 2012, 32(12): 3128-3132.
|
[3] |
李娜, 李勇, 冯家成, 等. 太湖水体Chl-a预测模型ARIMA的构建及应用优化[J]. 环境科学, 2021, 42(5): 2223-2231.
|
[4] |
曾一川, 曾会国, 袁伟皓, 等. 长江口入海通道水质综合分析与模型预测[J]. 环境工程, 2022, 40(5): 95-102
,108.
|
[5] |
GUO T, HE W, JIANG Z L, et al. An improved LSSVM model for intelligent prediction of the daily water level[J]. Energies, 2019, 12(1): 112.
|
[6] |
刘世存, 杨薇, 田凯, 等. 基于多层全连接神经网络的白洋淀水质预测[J]. 农业环境科学学报, 2020, 39(6): 1283-1292.
|
[7] |
刘攀, 郑雅莲, 谢康, 等. 水文水资源领域深度学习研究进展综述[J]. 人民长江, 2021, 52(10): 76-83.
|
[8] |
HUAN J, CHEN B, XU X G, et al. River dissolved oxygen prediction based on Random Forest and LSTM[J]. Applied Engineering in Agriculture, 2021, 37(5): 901-910.
|
[9] |
董泉汐. 基于深度学习的水环境时间序列预测方法研究[D]. 北京: 北京工业大学, 2020.
|
[10] |
张贻婷, 李天宏. 基于长短时记忆神经网络的河流水质预测研究[J]. 环境科学与技术, 2021, 44(8): 163-169.
|
[11] |
BARZEGAR R, AALAMI M T, ADAMOWSKI J. Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(2): 415-433.
|
[12] |
YANG Y R, XIONG Q Y, WU C, et al. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism[J]. Environmental Science and Pollution Research, 2021, 28(39): 55129-55139.
|
[13] |
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[C]. arXiv:1803.01271, 2018.
|
[14] |
李荆, 刘钰, 邹磊. 基于时空建模的动态图卷积神经网络[J]. 北京大学学报(自然科学版), 2021, 57(4): 605-613.
|
[15] |
ZHANG Y F, THORBURN P J, FITCH P. Multi-task temporal convolutional network for predicting water quality sensor data[C]//International Conference on Neural Information Processing, Springer, 2019: 122-130.
|
[16] |
FU Y X, HU Z H, ZHAO Y C, et al. A long-term water quality prediction method based on the temporal convolutional network in smart mariculture[J]. Water, 2021, 13(20): 2907.
|
[17] |
LI W S, WEI Y G, AN D, et al. LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network[J].Environmental Science and Pollution Research, 2022, 29(26): 39545-39556.
|
[18] |
SHIH S Y, SUN F K, LEE H Y. Temporal pattern attention for multivariate time series forecasting[J]. Machine Learning, 2019, 108(8/9): 1421-1441.
|
[19] |
崔鸿雁, 徐帅, 张利锋, 等. 机器学习中的特征选择方法研究及展望[J]. 北京邮电大学学报, 2018, 41(1): 1-12.
|
[20] |
张阳, 冼慧婷, 赵志杰. 基于空间相关性和神经网络模型的实时河流水质预测模型[J].北京大学学报(自然科学版), 2022, 58(2): 337-344.
|
[21] |
SCHOBER P, BOER C, SCHWARTE L A. Correlation coefficients: appropriate use and interpretation[J]. Anesthesia and Analgesia, 2018, 126(5): 1763-1768.
|
[22] |
PANTISKAS L, VERSTOEP K, BAL H. Interpretable multivariate time series forecasting with temporal attention convolutional neural networks[C]//IEEE Symposium Series on Computational Intelligence, 2020: 1687-1694.
|
[23] |
ZHAI N J, ZHOU X F. Temperature prediction of heating furnace based on deep transfer learning[J]. Sensors, 2020, 20(17): 4676-4702.
|
[24] |
WAN R Z, MEI S P, WANG J, et al. Multivariate temporal convolutional network: a deep neural networks approach for multivariate time series forecasting[J]. Electronics, 2019, 8(8): 876-893.
|
[25] |
ZHOU X H, WANG J P, CAO X K, et al. Simulation of future dissolved oxygen distribution in pond culture based on sliding window-temporal convolutional network and trend surface analysis[J]. Aquacultural Engineering, 2021, 95: 102200.
|
[26] |
王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884-1892.
|
[27] |
SONG C G, YAO L H, HUA C Y, et al. A novel hybrid model for water quality prediction based on synchrosqueezed wavelet transform technique and improved long short-term memory[J]. Journal of Hydrology, 2021, 603(A): 126879.
|
[28] |
李光, 吴祈宗. 基于结论一致的综合评价数据标准化研究[J]. 数学的实践与认识, 2011, 41(3): 72-77.
|
[29] |
LIU Y Q, ZHANG Q, SONG L H, et al. Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction[J]. Computers and Electronics in Agriculture, 2019, 165: 104964.
|
[30] |
ZHOU J, WANG Y Y, XIAO F, et al. Water quality prediction method based on IGRA and LSTM[J]. Water, 2018, 10(9): 1148.
|
[31] |
许佳辉, 王敬昌, 陈岭, 等. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
|
[32] |
陈海涵, 吴国栋, 李景霞, 等. 基于注意力机制的深度学习推荐研究进展[J]. 计算机工程与科学, 2021, 43(2): 370-380.
|
[33] |
王竹荣, 薛伟, 牛亚邦, 等. 基于注意力机制的泊位占有率预测模型研究[J]. 通信学报, 2020, 41(12): 182-192.
|