Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024
Citation: LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024

INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA

doi: 10.13205/j.hjgc.202305024
  • Received Date: 2022-04-30
  • In recent years, the water level of reservoirs in Guangxi continued to decline. Water quality problems caused by the sudden blackening phenomenon attracted widespread attention. In order to explore the migration and transformation law of iron, manganese and sulfide under the low water level, we comprehensively investigated and analyzed meteorological, hydrological, and water quality data from 2018 to 2021 and continuous sampling data during the low water level period. The results showed that long-term inflow led to a decrease in the reservoir storage capacity. Water level fluctuation was mainly affected by low-frequency and low-volume rainfall. The average dissolved oxygen concentration of the bottom water in the thermal stratification period was 1.79 mg/L when the water depth descended to about 11 meters. Mixing depth of low water level area was closely related to completely mixed. Further analysis results indicate that the water level declining promoted the increase of Fe and Mn concentrations (4.28 mg/L and 5.41 mg/L), reaching 3.67, 3.68 times that of 2018. Horizontal physical and chemical property differences and the migration of pollutants occurred by thermal stratification led to the deterioration of water quality. In general, the blackening phenomenon presented regional differences. Seasonal alternation of the mixing period and stratification period is the driving factor for the accumulation, migration and transformation of Fe and Mn.
  • [1]
    黄宇波,杨霞,向波.水位变化对三峡水库小江蓝藻水华的影响[J].四川环境,2020,39(6):115-121.
    [2]
    符坤,张六一,詹立坤,等.模拟氮沉降对三峡库区消落带土壤重金属的活化研究[J].环境影响评价,2021,43(1):85-90.
    [3]
    朱广伟,赵林林,陈伟民,等.低水位运行对天目湖水库水质与生态的影响[J].生态与农村环境学报,2011,27(4):87-94.
    [4]
    刘聚涛,温春云,韩柳,等.2012—2017年鄱阳湖水位变化与氮磷响应特征研究[J].环境污染与防治,2020,42(10):1274-1279.
    [5]
    JOUNG D J, LEDUC M, RAMCHARITAR B, et al. Winter weather and lake-watershed physical configuration drive phosphorus, iron, and manganese dynamics in water and sediment of ice-covered lakes[J]. Limnology and Oceanography,2017,62(4).
    [6]
    王洪义,许静.低水位运行对太平池水库水环境的影响[J].东北水利水电,2015,33(2):57-58

    ,70.
    [7]
    王丽君,程瑞梅,肖文发,等.三峡库区水位消落植被土壤pH、阳离子含量随海拔及年际的动态特征[J].林业科学研究,2021,34(2):12-23.
    [8]
    郭胜,李崇明,郭劲松,等.三峡水库蓄水后不同水位期干流氮、磷时空分异特征[J].环境科学,2011,32(5):1266-1272.
    [9]
    WANG Z X, WANG T X, LIU X L, et al. Water level decline in a reservoir: implications for water quality variation and pollution source identification[J]. International Journal of Environmental Research and Public Health,2020,17(7):2400.
    [10]
    黄玥,黄志霖,肖文发,等.三峡水库水位调度对出库水质影响分析与水质预测[J].水资源与水工程学报,2020,31(4):78-85.
    [11]
    RONG N, LU W Z, ZHANG C Y, et al. In situ high-resolution measurement of phosphorus, iron and sulfur by diffusive gradients in thin films in sediments of black-odorous rivers in the Pearl River Delta region, South China[J]. Environmental Research,2020,189:109918.
    [12]
    国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [13]
    曾华献,李玉麟,王敬富,等.2009—2018年贵阳市阿哈水库水质时空变化特征分析[J].地球与环境,2021,49(4):367-374.
    [14]
    朱雅,李一平,罗凡,等.我国南方桉树人工林区水库沉积物污染物的分布特征及迁移规律[J].环境科学,2020,41(5):2247-2256.
    [15]
    黄廷林,谭欣林,李扬,等.金盆水库热分层特性及扬水曝气系统运行效果研究[J].西安建筑科技大学学报(自然科学版),2018,50(2):270-276,284.
    [16]
    RICHARD A, WILDMAN, JANET G. Hering. Potential for release of sediment phosphorus to Lake Powell (Utah and Arizona) due to sediment resuspension during low water level[J]. Lake and Reservoir Management,2011,27(4).
    [17]
    吕晓龙,黄廷林,李楠,等.暴雨径流潜流过程及其对分层水库水质的影响[J].中国环境科学,2019,39(7):3064-3072.
    [18]
    PIOTR K, LILIANNA B. Influence of sedimentary Fe and Mn on the oxygenation of overlying waters in dam reservoirs[J]. Journal of Ecological Engineering,2018,19(5).
    [19]
    蔡宇. 铁、锰和硫在沉积物—孔隙水界面的生物地球化学行为及其对砷迁移行为的影响[D].厦门:厦门大学,2019.
    [20]
    丁庆章,刘学勤,张晓可.水位波动对长江中下游湖泊湖滨带底质环境的影响[J].湖泊科学,2014,26(3):340-348.
    [21]
    孙祥,朱广伟,笪文怡,等.天目湖沙河水库热分层变化及其对水质的影响[J].环境科学,2018,39(6):2632-2640.
    [22]
    盛昱凤,薛媛媛,戚丽萍,等.1960年以来太湖水位变化特征及影响因素分析[J].北京师范大学学报(自然科学版),2021,57(1

    ):22-28.
    [23]
    KUNZ T J, DIEHL S. Phytoplankton, light and nutrients along a gradient of mixing depth: a field test of producer-resource theory[J]. Freshwater Biology,2003,48(6):1050-1063.
    [24]
    卢金锁,李志龙.热分层对水库水质的季节性影响:以西安黑河水库为例[J].湖泊科学,2014,26(5):698-706.
    [25]
    MARTYNOVA M V. Time variations of the concentration of mobile forms of Fe, Mn, and P in silts of the Mozhaisk Reservoir[J]. Water Resources,2015,42(5):652-657.
    [26]
    魏尧,李一平,朱雅,等.我国南方地区桉树叶浸泡对水库沉积物致黑元素分布及迁移转化的影响[J/OL].湖泊科学:1-12.
    [27]
    MUNGER Z W, CAYY C C, GERLING A B, et al. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir[J]. Water Research,2016,106:1-14.
    [28]
    孙昊苏,赵磊,胡国金.大宁调蓄水库低水位运行期水质保障措施[J].水资源开发与管理,2021(2):3-6,21.
  • Relative Articles

    [1]GUO Xiang, GUO Xinchao, XIONG Jiaqing, ZHOU Jiajia. Effect of DO and C/N on nitrogen and phosphorus removal efficiency of A2/O-MBR at low temperature[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 118-124. doi: 10.13205/j.hjgc.202501013
    [2]LI Zhenhua. AN EXPERIMENTAL STUDY ON HIGH EFFICIENCY INTERCEPTION AND PURIFICATION FOR URBAN RAINWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 108-115. doi: 10.13205/j.hjgc.202412014
    [3]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [4]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [5]SHI Xiaobei. RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030
    [6]ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
    [7]LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018
    [8]JING Yu-shu, MOU Run-zhi, JIANG Yi-ming, LIU Zhang-qing, YANG Yan-dong. REDUCING ENERGY AND CHEMICALS CONSUMPTION OF WASTEWATER TREATMENT PLANTS BY ACCURATE AERATION CONTROL: A CASE STUDY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 141-145,165. doi: 10.13205/j.hjgc.202205020
    [9]CHEN Yanxu, CHENG Yan, HE Huijun, ZHU Zongqiang, ZHANG Lihao, ZHU Yinian. ATRAZINE REMOVAL FROM WATER BY MOSO BAMBOO BASED Fe-Co/C COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 38-44,73. doi: 10.13205/j.hjgc.202203007
    [10]LIU Si-xuan, LI Yi-ping, ZHU Ya, TANG Chun-yan, WEI Yao, LI Rong-hui, CHEN Gang. MIGRATION OF IRON, MANGANESE AND SULFIDE IN BLACK RESERVOIR WATER IN SOUTH CHINA: A CASE STUDY OF TIANBAO RESERVOIR, NANNING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 78-84. doi: 10.13205/j.hjgc.202110011
    [11]LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011
    [12]CHEN Mei-feng, LI Xin-li, YANG Pei-lin, LUO Qian, QIN Fan-xin. STABILIZATION OF AS CONTAMINATED SOILS BY MODIFIED NANO-TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 222-227. doi: 10.13205/j.hjgc.202010035
    [18]INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010
  • Cited by

    Periodical cited type(3)

    1. 毛德华,周滢,周懿琳. 1990~2016年湘江流域水质时空变化及驱动因素分析. 环境科学. 2024(07): 3953-3964 .
    2. 张晨,王超跃,杨蕊,李旭东,吴时强. 南四湖不同起调水位汛期调水风险传导规律. 水科学进展. 2024(05): 817-829 .
    3. 朱利英,郁达伟,章美良,吴勇明,钱宇佳,喻可喆,陶茂梁,高婕,魏志华,桂双林,魏源送. 水位对鄱阳湖赣江三角洲典型断面水环境质量变化的影响. 环境科学学报. 2023(11): 115-124 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.7 %FULLTEXT: 8.7 %META: 88.5 %META: 88.5 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.6 %其他: 20.6 %其他: 0.5 %其他: 0.5 %上海: 0.5 %上海: 0.5 %东莞: 0.9 %东莞: 0.9 %保定: 0.5 %保定: 0.5 %信阳: 1.4 %信阳: 1.4 %北京: 1.4 %北京: 1.4 %十堰: 3.2 %十堰: 3.2 %南京: 3.7 %南京: 3.7 %南宁: 0.9 %南宁: 0.9 %南通: 0.5 %南通: 0.5 %台州: 0.9 %台州: 0.9 %合肥: 0.9 %合肥: 0.9 %大同: 0.9 %大同: 0.9 %大连: 0.9 %大连: 0.9 %天津: 4.6 %天津: 4.6 %宜春: 0.5 %宜春: 0.5 %常州: 0.5 %常州: 0.5 %常德: 1.4 %常德: 1.4 %广州: 0.5 %广州: 0.5 %张家口: 2.8 %张家口: 2.8 %成都: 1.4 %成都: 1.4 %扬州: 2.8 %扬州: 2.8 %昆明: 0.9 %昆明: 0.9 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.5 %杭州: 0.5 %温州: 0.9 %温州: 0.9 %湛江: 1.8 %湛江: 1.8 %漯河: 4.1 %漯河: 4.1 %玉溪: 0.5 %玉溪: 0.5 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.5 %福州: 0.5 %芒廷维尤: 16.1 %芒廷维尤: 16.1 %芝加哥: 2.8 %芝加哥: 2.8 %衡阳: 0.9 %衡阳: 0.9 %西宁: 8.3 %西宁: 8.3 %西安: 0.5 %西安: 0.5 %贵阳: 1.8 %贵阳: 1.8 %资阳: 1.4 %资阳: 1.4 %运城: 2.3 %运城: 2.3 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 1.4 %重庆: 1.4 %长沙: 0.5 %长沙: 0.5 %青岛: 0.5 %青岛: 0.5 %其他其他上海东莞保定信阳北京十堰南京南宁南通台州合肥大同大连天津宜春常州常德广州张家口成都扬州昆明晋城朝阳杭州温州湛江漯河玉溪石家庄福州芒廷维尤芝加哥衡阳西宁西安贵阳资阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (191) PDF downloads(8) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return