Citation: | CHEN Chen, ZHANG Fan, CHEN Chao, MA Jie. RESEARCH PROGRESS OF IN-SITU REMEDIATION OF SEDIMENT WITH PERSISTENT ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 222-230,236. doi: 10.13205/j.hjgc.202305029 |
[1] |
YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments[J]. Journal of Hazardous Materials, 2021, 404(15): 124052.
|
[2] |
HELENA I G, DIAS-FERREIRA C, ALEXANDRA, et al. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application[J]. Science of the Total Environment, 2013, 445/446(15): 237-260.
|
[3] |
OLISAH C, JANINE B A, RUBIDGE G. The state of persistent organic pollutants in South African estuaries: a review of environmental exposure and sources[J]. Ecotoxicology and Environmental Safety, 2021, 219: 112316.
|
[4] |
PADHYE L P, TEZEL U. Fate of environmental pollutants[J]. Water Environmental Research, 2014, 86(10): 1714-1773.
|
[5] |
国家履行斯德哥尔摩公约工作协调组办公室. 中华人民共和国履行《关于持久性有机污染物的斯德哥尔摩公约》国家实施计划[M]. 北京:中国环境科学出版社, 2008.
|
[6] |
王胜凡,庄毅璇,王磊,等. 河道污染底泥处理技术[J]. 广东化工, 2021, 48(1): 82-83.
|
[7] |
CAI C Y, ZHAO M H, YU Z, et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: a review[J]. Science of the Total Environment, 2019, 662(20): 205-217.
|
[8] |
国家环境保护总局.2020年中国环境状况公报[R].2020.
|
[9] |
张旭. 黄河流域不同季节水相、沉积物和土壤中多环芳烃分布、来源和风险评价[D]. 北京: 北京交通大学, 2017.
|
[10] |
陈敏, 徐爱兰. 长江口区饮用水源半挥发性有机污染物污染状况[J]. 人民长江,2011, 42(1): 13-17.
|
[11] |
那金. 淮河流域浅层地下水中有机污染物特征及成因研究[D]. 常州:常州大学,2009.
|
[12] |
陆华, 陆徐荣, 杨磊, 等. 淮河流域江苏平原区浅层地下水污染分析[J]. 环境监测管理与技术,2014, 26(5): 19-23.
|
[13] |
詹志薇. 珠江三角洲典型地区地下水有机污染物环境影响及其脆弱性评价[D]. 广州: 华南农业大学, 2016.
|
[14] |
丁辉,李鑫钢,孙贻超,等. 海河干流有机污染问题浅议[J]. 海河水利,2005(2): 18-20.
|
[15] |
吕佳佩. 辽河水环境中典型持久性有机污染物的污染特征硏究[D]. 北京:中国环境科学研究院,2015.
|
[16] |
万晨洁, 余益军, 张莉, 等. 太湖有机污染物的生态风险研究[J]. 南京大学学报, 2017, 53(2): 256-264.
|
[17] |
贺勇,徐福留,何伟, 等. 巢湖生态系统中微量有机污染物的研究进展[J]. 生态毒理学报, 2016, 11(2): 111-123.
|
[18] |
高秋生, 焦立新, 杨柳, 等. 白洋淀典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2018, 39(4): 1616-1627.
|
[19] |
孙盼盼. 滇北小流域土壤和沉积物中持久性有机污染物的地球化学特征[D]. 南京: 南京师范大学, 2017.
|
[20] |
董祎波,吴慧芳,张国庆, 等. 河湖底泥污染物及其原位修复技术的研究进展[J]. 广东水利水电, 2020(12): 13-18.
|
[21] |
王华鹏,李金城,韦春满,等. 水体沉积物原位修复技术与进展[J]. 中国农村水利水电, 2021(5): 87-93.
|
[22] |
BONAGLIA S, RAMO R, MARZOCCHI U, et al. Capping with activated carbon reduces nutrient fluxes, denitrification and meiofauna in contaminated sediments[J]. Water Research, 2019, 148(1): 515-525.
|
[23] |
ZIMMERMAN J R, GHOSH U M, MILLWARD R N, et al. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: physicochemical tests[J]. Environmental Science & Technology, 2004, 38(20): 5458-5464.
|
[24] |
CHOI Y J, CHO Y M, LUTHY R G. In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 1. column studies[J]. Environmental Science & Technology, 2014,48(3): 1835-1842.
|
[25] |
韩梅. 活性炭纤维对底泥中芳香族有机污染物的吸附性能研究[D]. 北京:中国地质大学, 2017.
|
[26] |
SARAH J, MORTEN S, GORANS S, et al. Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: sediment-to-water fluxes and bioaccumulation in boxcosm tests[J]. Environmental Science & Technology, 2012, 46(6): 3343-3351.
|
[27] |
张丽,宣李,黎晓宁, 等. 磁性活性炭原位修复养殖底泥中多溴联苯醚(PBDEs)的研究[J].农业环境科学学报, 2020, 39(8): 1818-1827.
|
[28] |
LOU L P, WU B B, WANG L N, et al. Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar[J]. Bioresource Technology, 2011, 102(5): 4036-4041.
|
[29] |
周岩梅, 杨舒然, 孟晓东, 等. 生物质炭对沉积物中有机污染物的吸附固定作用机理[J]. 环境科学研究, 2019, 32(1): 43-51.
|
[30] |
毕磊,邱凌峰. 污染底泥修复治理技术[J]. 中国环保产业, 2010(11): 32-35.
|
[31] |
申粤, 聂煜东, 张贤明, 等. 底泥原位覆盖材料选择及应用研究进展[J]. 环境污染与防治, 2021, 43(7): 898-903.
|
[32] |
CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102:716-723.
|
[33] |
MIQUEL L, YORA T. Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna[J]. Water Research, 2010, 44: 309-319.
|
[34] |
LUZ E B, YOAV B. Immobilized microalgae for removing pollutants: Review of practical aspects[J]. Bioresource Technology, 2010, 101: 1611-1627.
|
[35] |
刘飞,段登选,李敏,等. 菹草和螺蛳对养殖池塘水体及底泥氮、磷等净化效果研究[J]. 海洋湖沼通报,2016, 6: 107-112.
|
[36] |
唐艳, 胡小贞, 卢少勇. 污染底泥原位覆盖技术综述[J]. 生态学杂志, 2007, 26(7): 1125-1128.
|
[37] |
GARBACIAK S, SPADARO P, THORNURG T, et al. Sequential risk mitigation and the role of natural recovery in contaminated sediment projects[J]. Water Science & Technology, 1998, 37(6/7): 331-336.
|
[38] |
HASSANSHAHIAN M, EMTIAZI G, CARUSO G, et al. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study[J]. Marine Environmental Research, 2014,95: 28-38.
|
[39] |
罗义, 毛大庆. 生物修复概述及国内外研究进展[J]. 辽宁大学学报, 2003, 30(4): 298-302.
|
[40] |
CHEN M J, SHIH K, HU M, et al. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 2967-2975.
|
[41] |
AHN Y B, LIU F, FENNELL D E, et al. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments[J]. FEMS Microbiology Ecology, 2010, 66(2): 271-281.
|
[42] |
吴小菁, 刘宇, 毛彦青,等.共基质生物刺激技术去除城市河道底泥难降解有机污染物研究[J]. 水利水电技术, 2015, 46(2): 48-52.
|
[43] |
TAM N F Y, WONG Y S. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons[J]. Marine Pollution Bulletin, 2008, 57(6-12): 716-726.
|
[44] |
ROCCHETTI L, DELLNNO A, BEOLCHINI F, et al. Changes of bacterial diversity during anaerobic bioremediation of harbor sediment[J]. Journal of Biotechnology, 2010, 150(S1): 222-223.
|
[45] |
JACQUES R J S, OKEKE B C, BENTO F M, et al. Microbial consortium bio augmentation of a polycyclic aromatic hydrocarbons contaminated soil[J]. Bioresource Technology, 2008, 99(7): 2637-2643.
|
[46] |
RICHARD B M. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000, 3(2): 153-162.
|
[47] |
YAN Z S, GUO H Y, SONG T S, et al. Tolerance and remedial function of rooted submersed macrophyte Vallisneria spiralis to phenanthrene in freshwater sediments[J]. Ecological Engineering, 2011, 37(2): 123-127.
|
[48] |
JIA H, LI J, LI Y, et al. The remediation of PAH contaminated sediment with mangrove plant and its derived biochars[J]. Journal of Environmental Management, 2020, 268(15): 110410.
|
[49] |
MADHURANKHI G, POULOMI C, KOUSHIK M, et al. Bioaugmentation and biostimulation: a potential strategy for environmental remediation[J]. Journal of Microbiology & Experimentation, 2018, 6(5): 223-231.
|
[50] |
VARADHAN A S, KHODADOUST A P, BRENNER R.C. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(10): 1691-1707.
|
[51] |
YU K S H, WONG A H Y, YAU K W Y, et al. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments[J]. Marine Pollution Bulletin, 2005, 51(8/9/10/11/12): 1071-1077.
|
[52] |
PAYNE R B, MAY H D, SOWERS K R. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium[J]. Environmental Science & Technology, 2011, 45(20): 8772-8779.
|
[53] |
朱太旺,王志英. 千灯浦河道底质污染修复工程技术初探[J]. 水利建设与管理, 2014, 34(5): 71-73.
|
[54] |
张蕾,李红霞,马伟芳, 等. 黑麦草对复合污染河道疏浚底泥修复的研究[J]. 农业环境科学学报, 2006, 25(1): 107-112.
|
[55] |
BANALA U K, DAS N P I, TOLETI S R. Microbial interactions with uranium: towards an effective bioremediation approach[J]. Environmental Technology & Innovation, 2021, 21: 101254.
|
[56] |
JIANG D N, ZENG G M, HUANG D L, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163: 217-227.
|
[57] |
ZHANG W X. Nanoscale iron particles for environmental remediation: an overview[J]. Journal of Nanoparticle Research, 2003, 5(3/4):323-332.
|
[58] |
黄建军. 城市河道底泥营养盐释放及化学修复研究[D]. 天津:天津大学,2009.
|
[59] |
章萍,相明雪,马若男,等. 底泥就地稳定化中零价铁(Fe0)对有机污染物的作用及其对上覆水体水质的影响[J]. 湖泊科学, 2018, 30(5): 1218-1224.
|
[60] |
王新新, 张颖, 王元芬. 零价铁修复1, 3-二氯苯污染底泥[J]. 环境科学研究, 2009, 22(3): 289-293.
|
[61] |
董菊,贾宇彤,梅天雪,等.缓释型释氧剂在黑臭水体治理方面研究及应用[J]. 人民珠江,2019,40(10): 104-109.
|
[62] |
PARK J S, SONG Y J, PARK K, et al. Facile fabrication of oxygen-releasing tannylated calcium peroxide nanoparticles[J]. Materials, 2020, 13: 3864.
|
[63] |
LIN C W, WU C, TANG C T, et al. Novel oxygen releasing immobilized cell beads for bioremediation of BTEX contaminated water[J]. Bioresource Technology, 2012, 124(11): 45-51.
|
[64] |
WU C,CHANG S,LIN C W.Improvement of oxygen release from calcium peroxide-polyvinyl alcohol beads by adding low-cost bamboo biochar and its application in bioremediation[J].Clean-Soil, Air, Water, 2015, 43(2): 287-295.
|
[65] |
杨洁, 华丹芸, 林逢凯, 等.释氧复合剂强化沉淀物中萘的生物降解研究[J].安全与环境学报, 2013, 13(5): 35-39.
|
[66] |
殷瑶, 朱煜. 过氧化钙缓释氧颗粒的制备及缓释氧过程调控[J]. 净水技术, 2019, 38(增刊1): 199-203.
|
[67] |
AHEMAD M. Phosphate-solubilizing bacteria-assisted phytoremed-iation of metalliferous soils: a review[J]. 3 Biotech,2015,5:111-121.
|
[68] |
吕梦怡. 河道底泥的化学-生物协同修复效果及作用[D]. 天津:天津大学,2016.
|
[69] |
CHEN K N, BAO C H, ZHOU W P. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment[J]. Ecological Engineering, 2009, 35(11): 1646-1655.
|
[70] |
姜世英.芘污染底泥的植物-微生物联合修复作用研究[D].沈阳:东北大学,2008.
|
[71] |
夏瑛铭. 河道底泥中荧蒽污染的植物-微生物联合修复研究[D]. 天津:天津工业大学,2017.
|
[72] |
杨建峡. 河道底泥原位生物修复及工程应用[D]. 重庆:重庆大学,2018.
|
[73] |
DONG H R, LI L, LU Y, et al. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: a review[J]. Environment International, 2019, 124: 265-277.
|
[74] |
刘晓伟.采用生物促生剂重建河涌底泥微生态系统的研究[D]. 广州:暨南大学, 2012.
|
[75] |
PAN Y, LEUNG P Y, LI Y Y, et al. Enhancement effect of nanoscale zero-valent iron addition on microbial degradation of BDE-209 in contaminated mangrove sediment[J]. Science of the Total Environment, 2021, 781(10): 146702.
|