Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Xirong, DONG Zhen, LI Fayu, CAI Lijie, SUN Lin, LI Pengpeng. ECOLOGICAL MONITORING AND EVALUATION OF THE YELLOW RIVER DELTA BASED ON HIGH-RESOLUTION REMOTE SENSING DATA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 9-16. doi: 10.13205/j.hjgc.202306002
Citation: LIU Xirong, DONG Zhen, LI Fayu, CAI Lijie, SUN Lin, LI Pengpeng. ECOLOGICAL MONITORING AND EVALUATION OF THE YELLOW RIVER DELTA BASED ON HIGH-RESOLUTION REMOTE SENSING DATA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 9-16. doi: 10.13205/j.hjgc.202306002

ECOLOGICAL MONITORING AND EVALUATION OF THE YELLOW RIVER DELTA BASED ON HIGH-RESOLUTION REMOTE SENSING DATA

doi: 10.13205/j.hjgc.202306002
  • Received Date: 2023-03-01
    Available Online: 2023-09-02
  • The article analyzes water and soil erosion, soil desertification, wetland degradation, and human activities in the Yellow River Delta region from 2015 to 2020, based on various satellite remote sensing data and other auxiliary data. The results showed that more than 60% of the area in the Yellow River Delta region has no water and soil erosion, but the phenomenon is more obvious in the farmland areas where the rivers flow through. More than 90% of the region shows mild to moderate soil desertification, and soil desertification was the most severe in 2017. The wetland ecosystem increases, with a total area increase of 91.95 km2, accounting for 10.6% of the total area. The total area of human activities decreases by 152.02 hm2, with a 66.99% reduction in the agricultural development area and a slight increase in mineral resource development. Overall, ecological environment protection and restoration in the Yellow River Delta from 2015 to 2020 have achieved certain results, and the ecological environment has developed positively, but some ecological problems still exist, and the corresponding ecological governance and protection measures should be taken.
  • [1]
    牛铮, 李加洪, 高志海, 等.《全球生态环境遥感监测年度报告》进展与展望[J].遥感学报,2018,22(4):672-685.
    [2]
    LI Y, QIN H. Ecological conservation and construction in china:progress and situation[J]. Modern Economy, 2014, 5(1):48-55.
    [3]
    SIEPIELSKI A M, MORRISSEY M B, BUORO M, et al. Precipitation drives global variation in natural selection[J]. Science, 2017, 355(6328):959-962.
    [4]
    付素静, 冯海波, 万宝春. 遥感调查方法在河北省省级自然保护区生态环境变化评估方面的应用研究[J].中国环境管理,2014,6(4):34-37.
    [5]
    张建亮, 钱者东, 徐网谷, 等. 国家级自然保护区生态系统格局十年变化(2000-2010年)评估[J].生态学报,2017,37(23):8067-8076.
    [6]
    JONES K, PAN X, GARZA A, et al. Multi-level assessment of ecological coastal restoration in South Texas[J]. Ecological Engineering, 2010,36(4):435-440.
    [7]
    ROSE D C. UK national ecosystem assessment follow-on:synthesis of the key findings[M]. Brill, 2015, 72(2):145-147.
    [8]
    高吉喜, 赵少华, 侯鹏. 中国生态环境遥感四十年[J].地球信息科学学报,2020,22(4):705-719.
    [9]
    王亮, 姚梦园, 吴艳兰. 安徽省寿县生态状况变化(2010-2015年)遥感调查评估[J].安徽农业大学学报,2019,46(5):842-848.
    [10]
    杨薇, 裴俊, 李晓晓, 等. 黄河三角洲退化湿地生态修复效果的系统评估及对策[J].北京师范大学学报(自然科学版),2018,54(1):98-103.
    [11]
    李勇, 赵云泽, 卓志清, 等. 小兴安岭-三江平原区生态问题辨析及山水林田湖草保护修复策略[J].生态科学,2023,42(1):95-104.
    [12]
    刘宏元, 周志花, 王娜娜, 等. 黄河三角洲自然保护区湿地生态系统健康评价[J].中国农学通报,2022,38(27):74-78.
    [13]
    张晗旭, 李馨宇, 崔保山, 等. 黄河三角洲湿地生态修复工程对底栖动物的影响效果研究[J].环境工程,2023,41(1):222-231.
    [14]
    庞博, 杨文鑫, 崔保山, 等. 黄河三角洲湿地生物多样性保护工程植被修复效果评估[J].环境工程,2023,41(1):213-221.
    [15]
    张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J].遥感学报,2019,23(2):313-326.
    [16]
    刘纪远, 邵全勤,于秀波, 等.中国陆地生态系统综合监测与评估[M].北京:科学出版社,2016.
    [17]
    茹少峰, 马茹慧. 黄河流域生态环境脆弱性评价、空间分析及预测[J].自然资源学报,2022,37(7):1722-1734.
    [18]
    张希涛, 毕正刚, 车纯广, 等. 黄河三角洲滨海湿地生态问题及其修复对策研究[J].安徽农业科学,2019,47(5):84-87

    ,91.
    [19]
    刘东升. 国产高分遥感卫星数据典型地物要素提取方法研究[D]. 西安:长安大学,2022.
    [20]
    徐海涛. 秦巴山区生态状况与保护成效评估研究[D]. 成都:成都理工大学,2019.
    [21]
    魏影, 轩俊伟, 张文太, 等. 新疆县域土壤黏粒历史数据的不确定性[J].土壤通报,2018,49(3):505-511.
    [22]
    田培, 王哲, 喻海军, 等. 鄂西北山丘区水土流失时空格局及影响因子定量评价[J].水土保持研究,2023,30(3):76-85.
    [23]
    张鑫宇. 宾县水土流失敏感性分析与评价[D].哈尔滨:东北农业大学,2021.
    [24]
    生态环境部. 全国生态状况调查评估技术规范——生态系统服务功能评估:HJ 1173-2021[S]. 北京:生态环境部,2021.
    [25]
    生态环境部. 全国生态状况调查评估技术规范——生态问题评估:HJ 1174-2021[S]. 北京:生态环境部,2021.
    [26]
    何利平, 简季. 四川省2009-2020年植被覆盖度时空变化遥感动态监测[J].水土保持通报,2022,42(2):203-209.
    [27]
    生态环境部.全国生态状况调查评估技术规范——生态系统质量评估:HJ 1172-2021[S]. 北京:生态环境部,2021.
    [28]
    樊晶, 杨志刚, 郭盛才,等. 基于高分辨率影像的广东省国家级自然保护地人类活动遥感监测[J].林业与环境科学,2022,38(2):88-95.
    [29]
    顾朝军, 朱永清, 黄立文, 等. 长江流域水土流失变化及影响因素分析[J].中国防汛抗旱,2022,32(增刊1):24-29.
  • Relative Articles

    [1]WANG Libiao, WANG Xuesong, WU Weifeng, ZHOU Huazhen, ZHENG Jiajun, ZHANG Miaojia. EFFICIENCY ASSESSMENT AND DISPATCH OPTIMIZATION OF WATER PUMP OPERATIONS AT THE HONGPAN WATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 140-145. doi: 10.13205/j.hjgc.202411015
    [2]WANG Lei, YU Kun, CHEN Hui, MAO Zhekai, ZHANG Lingqin, XU Yuntao. APPLICATION OF UNMANNED INSPECTION IN WATER SUPPLY PIPELINE NETWORK BASED ON THE FUSION OF FIBER OPTIC SENSING AND VIDEO AI TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 59-63. doi: 10.13205/j.hjgc.202311010
    [3]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [4]SONG Wenke, WANG Shanyue, TAO Tao. A LEAKAGE ZONE IDENTIFICATION METHOD FOR WATER DISTRIBUTION NETWORKS BASED ON VIRTUAL PRESSURE PARTITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 184-191. doi: 10.13205/j.hjgc.202307025
    [5]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [6]LI Cong, DU Rui, PENG Yongzhen. NITROGEN REMOVAL EFFICIENCY AND CARBON SOURCE UTILIZATION CHARACTERISTICS OF PARTIAL DENITRIFICATION COUPLING ANAMMOX PROCESSES WITH DIFFERENT SLUDGE AGGREGATION MODES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 1-9. doi: 10.13205/j.hjgc.202309001
    [7]CHEN Xinyu, HOU Bingqian, GENG Ru, ZHOU Xiangtong, WU Zhiren, WEI Jing. A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 251-259. doi: 10.13205/j.hjgc.202211033
    [8]LI Ruiting, ZHANG Wenrui, LI Aimin, SHUANG Chendong, ZHOU Qing, SHI Peng. REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030
    [9]HONG Yiqun, CHEN Liping, GONG Yanfeng, XUE Fangling, ZHOU Yanjie, WANG Shiling. EFFECT OF BIOFILM ON SUSPENDED PARTICLES TRANSPORT IN POROUS MEDIA BASED ON LBM-DEM COUPLING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 101-108. doi: DOI:10.13205/j.hjgc.202207015
    [10]WANG Jiaquan, LI Zhirong, HUANG Chuyu, LI Zhaomin, XIN Kunlun. LEAKAGE LOCATION METHODS OF WATER DISTRIBUTION NETWORK BASED ON TEMPORAL AND PRESSURE SPATIAL FEATURES WITH PHYSICAL EXPERIMENT VERIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 233-240. doi: 10.13205/j.hjgc.202206030
    [11]LI Junyu, LIU Shuming, WU Xue, XIE Tao, JIN Ye. OPTIMIZATION OF URBAN WATER SUPPLY NETWORK BASED ON DYNAMIC PRUNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 226-232,153. doi: 10.13205/j.hjgc.202206029
    [12]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [13]SUN Hao, YU Tong, YIN Hao-shuai, ZHAO Fei, SHI Xue-qing, BI Xue-jun. RESEARCH PROGRESS ON BIOFOULING OF REVERSE OSMOSIS AND ITS MONITORING AND CONTROL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 62-72. doi: 10.13205/j.hjgc.202107007
    [14]KANG Xiao-feng, WANG Li-sheng, LIU Chun, LIU Yan-chen, HUANG Xia. RESEARCH PROGRESS OF NITROGEN REMOVAL IN MEMBRANE AERATED BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 38-45. doi: 10.13205/j.hjgc.202107004
    [15]WAN Ming-yue, DU Ji-ming, LI Jun, LI Yi, WANG Long-fei. INFLUENCE OF FLOWING AND STATIC WATER CONDITIONS ON MICROBIAL COMMUNITIES OF BIOFILMS ATTACHED ON SURFACE OF HYDRAULIC CONCRETE STRUCTURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 35-40,69. doi: 10.13205/j.hjgc.202002004
    [16]Liu Qiang, Zhao Taixin, Zhao Changshuang, Yan Meng. MICRO-POLLUTED LAKE WATER TREATMENT BY A FLOTATION/POROUS BALL/MEMBRANE INTEGRATED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 11-14. doi: 10.13205/j.hjgc.201501003
    [17]Duan Huajie, Tang Zhijian, Zhang Yuefeng, Zheng Pu, Zhu Guangcan, Wang Guangyuan. SIMULATION ON NITRIFICATION PERFORMANCE IN PULSE TRICKLING FILTER BASED ON BIOFILM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 53-57. doi: 10.13205/j.hjgc.201504012
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 88.3 %META: 88.3 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.3 %其他: 22.3 %其他: 1.1 %其他: 1.1 %China: 0.4 %China: 0.4 %上海: 3.9 %上海: 3.9 %东莞: 0.7 %东莞: 0.7 %中山: 0.4 %中山: 0.4 %保定: 0.4 %保定: 0.4 %北京: 2.5 %北京: 2.5 %十堰: 0.4 %十堰: 0.4 %南京: 4.6 %南京: 4.6 %厦门: 0.7 %厦门: 0.7 %台北: 0.4 %台北: 0.4 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %喀什: 1.8 %喀什: 1.8 %大同: 0.7 %大同: 0.7 %天津: 2.8 %天津: 2.8 %宜春: 0.7 %宜春: 0.7 %常州: 0.4 %常州: 0.4 %常德: 0.7 %常德: 0.7 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %张家界: 0.4 %张家界: 0.4 %成都: 0.4 %成都: 0.4 %扬州: 1.1 %扬州: 1.1 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 3.5 %杭州: 3.5 %桂林: 0.4 %桂林: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %河内: 0.4 %河内: 0.4 %济南: 0.4 %济南: 0.4 %温州: 0.7 %温州: 0.7 %湘潭: 0.7 %湘潭: 0.7 %漯河: 2.8 %漯河: 2.8 %澳门: 2.1 %澳门: 2.1 %福州: 1.8 %福州: 1.8 %秦皇岛: 0.7 %秦皇岛: 0.7 %绍兴: 1.1 %绍兴: 1.1 %芒廷维尤: 8.9 %芒廷维尤: 8.9 %芝加哥: 3.5 %芝加哥: 3.5 %葫芦岛: 0.4 %葫芦岛: 0.4 %西宁: 7.1 %西宁: 7.1 %西安: 1.1 %西安: 1.1 %西雅图: 0.4 %西雅图: 0.4 %贵阳: 3.9 %贵阳: 3.9 %运城: 1.1 %运城: 1.1 %连云港: 0.4 %连云港: 0.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.1 %郑州: 1.1 %重庆: 1.8 %重庆: 1.8 %长春: 0.4 %长春: 0.4 %长沙: 0.7 %长沙: 0.7 %马鞍山: 1.1 %马鞍山: 1.1 %其他其他China上海东莞中山保定北京十堰南京厦门台北合肥呼和浩特哈尔滨喀什大同天津宜春常州常德广州弗吉张家口张家界成都扬州昆明晋城朝阳杭州桂林武汉沈阳河内济南温州湘潭漯河澳门福州秦皇岛绍兴芒廷维尤芝加哥葫芦岛西宁西安西雅图贵阳运城连云港遵义邯郸郑州重庆长春长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (521) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return