Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
GE Jiaxin, CUI Buli, WANG Xiaojie, XIE Baohua, ZHAO Mingliang, YU Dongxue, YU Yang, SONG Weimin, MA Haiqing, ZHANG Xiaoshuai, HAN Guangxuan. EFFECTS OF TIDAL CREEK MORPHOLOGY ON SPATIAL DISTRIBUTION OF SOIL ORGANIC CARBON IN SOIL IN TIDAL WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 23-31. doi: 10.13205/j.hjgc.202306004
Citation: GE Jiaxin, CUI Buli, WANG Xiaojie, XIE Baohua, ZHAO Mingliang, YU Dongxue, YU Yang, SONG Weimin, MA Haiqing, ZHANG Xiaoshuai, HAN Guangxuan. EFFECTS OF TIDAL CREEK MORPHOLOGY ON SPATIAL DISTRIBUTION OF SOIL ORGANIC CARBON IN SOIL IN TIDAL WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 23-31. doi: 10.13205/j.hjgc.202306004

EFFECTS OF TIDAL CREEK MORPHOLOGY ON SPATIAL DISTRIBUTION OF SOIL ORGANIC CARBON IN SOIL IN TIDAL WETLAND

doi: 10.13205/j.hjgc.202306004
  • Received Date: 2023-02-28
    Available Online: 2023-09-02
  • Soil organic carbon is a major carbon pool in tidal wetland ecosystems. By dividing the level of the tidal creek and calculating its morphological characteristic index, the spatial distribution characteristics of the typical tidal creek system were analyzed, taking a typical natural tidal channel as the research object. The spatial distribution characteristics of soil organic carbon were analyzed by geostatistical methods. In addition, the effects of morphological characteristics of the tidal creek on the spatial distribution of soil organic carbon were explored. The results showed that there was obvious spatial heterogeneity in the morphological characteristics of the tidal creek. In the middle tidal flats, the connectivity of the tidal creek network was higher, and the density, curvature and bifurcation ratio were also higher than that in other tidal zones. The tidal creek length gradually increased with the increase of tidal creek development grade, while the tidal creek curvature gradually decreased with the increase of tidal creek development grade. The spatial interpolation results showed that the lowest soil organic carbon in 0 to 10 cm soil layer occurred in the middle tidal flats where tidal creeks were more developed, and within the 10~20 cm soil layer, soil organic carbon showed a gradually increasing trend from sea to land, and showed a strip-shaped spatial distribution choracteristic. In the low tidal flats, the mean value of soil organic carbon in a third-order creek was significantly greater than that in a first-order creek. In the middle tidal flats, the mean value of soil organic carbon in a second-order creek was significantly greater than that in a third-order and a first-order creek. The soil organic carbon of the high tide flats was not significantly correlated with the tide creek development level. Within the 0 to 10 cm soil layer, the soil organic carbon gradually increased with increasing distance to the tidal creek in low and middle tidal flats. Within the 10 to 20 cm soil layer, the soil organic carbon gradually decreased with increasing distance to tidal creek in the middle tidal flats. However, there was no correlation between the soil organic carbon and the distance to the tidal creek in high tidal flats. The spatial heterogeneity in the morphological characteristics of the tidal creek was one of the important factors of spatial differences in soil organic carbon content in the tidal wetland. Therefore, morphology changes in tidal creeks should be considered in order to accurately estimate the soil carbon pools in tidal wetlands.
  • loading
  • [1]
    周金戈,覃国铭,张靖凡,等.中国盐沼湿地蓝碳碳汇研究进展[J].热带亚热带植物学报,2022,30(6):765-781.
    [2]
    李静泰,闫丹丹,么秀颖,等.中国滨海湿地碳储量估算[J].土壤学报:2013,3(17):1-18.
    [3]
    DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005,2(1):1-8.
    [4]
    CHEN L Z, PAN L H, QIU G L. Coastal blue carbon sink in China under the influence of human activity[J]. J Guangxi Acad Sci, 2021, 37(3):186-194.
    [5]
    王法明,唐剑武,叶思源,等.中国滨海湿地的蓝色碳汇功能及碳中和对策[J].中国科学院院刊,2021,36(3):241-251.
    [6]
    SCHUERCH M, SPENCER T, TEMMERMAN S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722):231-234.
    [7]
    周晨昊,毛覃愉,徐晓,等.中国海岸带蓝碳生态系统碳汇潜力的初步分析[J].中国科学:生命科学,2016,46(4):475-486.
    [8]
    SPENCER T, SCHUERCH M, NICHOLLS R J, et al. Global coastal wetland change under sea-level rise and related stresses:the DIVA wetland change model[J]. Glob Planet Change, 2016, 139:15-30.
    [9]
    SANDERMAN J, HENGL T, FISKE G J. Soil carbon debt of 12000 years of human land use[J]. Proceedings of the National Academy of Sciences of the United States of America Proc Natl Acad Sci USA, 2017, 114(36):9575-9580.
    [10]
    XIONG Y M, LIAO B W, WANG F M. Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments[J]. Marine Pollution Bulletin, 2018, 131:378-385.
    [11]
    彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报,2004,41(4):618-623.
    [12]
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [13]
    王经波,郑利林,郭宇菲,等.鄱阳湖湿地土壤有机碳空间分布及其影响因素[J].长江流域资源与环境,2022,31(4):915-926.
    [14]
    龚政,耿亮,吕亭豫,等.开敞式潮滩-潮沟系统发育演变动力机制:Ⅱ. 潮汐作用[J]. 水科学进展,2017,28(2):231-239.
    [15]
    骆梦,王青,邱冬冬,等.黄河三角洲典型潮沟系统水文连通特征及其生态效应[J].北京师范大学学报(自然科学版),2018,54(1):17-24.
    [16]
    WEBSTER G, O'SULLIVAN L A, MENG Y Y, et al. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments[J]. Fems Microbiology Ecology, 2015, 91(2):1-18.
    [17]
    CHAMBERS L G, DAVIS S E, TROXLER T, et al. Biogeochemical effects of simulated sea level rise on carbon loss in an everglades mangrove peat soil[J]. Hydrobiologia, 2014, 726(1):195-211.
    [18]
    CHEN Q F, GUO B B, ZHAO C S, et al. Characteristics of CH4 and CO2 emissions and influence of water and salinity in the Yellow River delta wetland, China[J]. Environmental Pollution, 2018, 239:289-299.
    [19]
    原一荃. 长江口典型潮沟系统有机碳累积与横向输移[D]. 上海:华东师范大学,2019.
    [20]
    李冬雪,李雨芩, 张珂豪, 等. 黄河口典型潮沟土壤碳氮分布特征规律[J]. 自然资源学报, 2020,35(2):460-471.
    [21]
    杜书栋, 白军红, 贾佳, 等. 黄河三角洲芦苇湿地土壤有机碳储量沿盐分梯度的变化特征[J]. 环境科学学报, 2022,42(1):80-87.
    [22]
    李远,章海波,陈小兵,等.黄河三角洲内陆到潮滩土壤中碳、氮元素的梯度分布规律[J].地球化学,2014,43(4):338-345.
    [23]
    郭雨桐.黄河口湿地不同植被类型条件下土壤有机碳分布及真菌群落结构特征[D].北京:北京林业大学,2019.
    [24]
    夏志坚,白军红,贾佳,等.黄河三角洲芦苇盐沼土壤碳、氮含量和储量的垂直分布特征[J].湿地科学,2015,13(6):702-707.
    [25]
    于君宝,王永丽,董洪芳,等.基于景观格局的现代黄河三角洲滨海湿地土壤有机碳储量估算[J].湿地科学,2013,11(1):1-6.
    [26]
    贾佳,白军红,高照琴,等.黄河三角洲潮间带盐沼土壤碳、氮含量和储量[J].湿地科学,2015,13(6):714-721.
    [27]
    吕亭豫, 龚政, 张长宽, 等. 粉砂淤泥质潮滩潮沟形态特征及发育演变过程研究现状[J]. 河海大学学报(自然科学版), 2016,44(2):178-188.
    [28]
    牟奎南, 宫兆宁, 邱华昌. 黄河三角洲潮沟网络形态特征的时空分异规律及其发育过程[J]. 地理学报, 2021,76(9):2312-2328.
    [29]
    沈永明, 张忍顺, 王艳红. 互花米草盐沼潮沟地貌特征[J]. 地理研究, 2003,22(4):520-527.
    [30]
    孙佳琪.基于LiDAR DEM的江苏中部沿海潮沟及其集水区形态特征研究[D]. 南京:南京大学,2018.
    [31]
    WANG X Y, SUN J W, ZHAO Z H. Effects of river discharge and tidal meandering on morphological changes in a meso tidal creek[J]. Estuarine, Coastal and Shelf Science,2020,234:106635.
    [32]
    CHEN X, ZHANG M L, JIANG H Z. Morphological characteristics and hydrological connectivity evaluation of Tidal Creeks in Coastal Wetlands[J]. Land, 2022, 11(10):1-17.
    [33]
    贺宝根. 长江口潮滩水动力过程,泥沙输移与冲淤变化[D]. 上海:华东师范大学,2004.
    [34]
    贾瑞霞,仝川, 王维奇, 等. 闽江河口盐沼湿地沉积物有机碳含量及储量特征[J]. 湿地科学, 2008,6(4):492-499.
    [35]
    仝川, 贾瑞霞, 王维奇, 等. 闽江口潮汐盐沼湿地土壤碳氮磷的空间变化[J]. 地理研究, 2010,29(7):1203-1213.
    [36]
    PETER M, DIRK G, STEFSNIE N, et al. Unrecognized controls on microbial functioning in blue carbon ecosystems:the role of mineral enzyme stabilization and allochthonous substrate supply[J]. Ecology and Evolution,2020,10(2):998-1011.
    [37]
    高灯州, 曾从盛, 章文龙, 等.闽江口湿地土壤有机碳及其活性组分沿水文梯度分布特征[J]. 水土保持学报, 2014,28(6):216-227.
    [38]
    陈桂香, 高灯州, 陈刚, 等. 互花米草入侵对我国红树林湿地土壤碳组分的影响[J]. 水土保持学报, 2017,31(6):249-256.
    [39]
    GUAN B, ZHANG H X, WANG X H, et al. Salt is a main factor shaping community composition of arbuscular mycorrhizal fungi along a vegetation successional series in the Yellow River Delta[J]. Catena,2020,185:104318.
    [40]
    姜俊彦,黄星, 李秀珍, 等. 潮滩湿地土壤有机碳储量及其与土壤理化因子的关系:以崇明东滩为例[J].生态与农村环境学报,2015,31(4):540-547.
    [41]
    王红丽, 肖春玲, 李朝君, 等. 崇明东滩湿地土壤有机碳空间分异特征及影响因素[J]. 农业环境科学学报, 2009,28(7):1522-1528.
    [42]
    陈杰.中国潮间带滩涂沉积物碳氮磷的埋藏特征[D].上海:华东师范大学,2021.
    [43]
    顿佳耀,王初,姚东京,等.崇明东滩盐沼表层沉积物有机碳空间分布特征及其来源示踪研究[J].长江流域资源与环境,2019,28(1):157-165.
    [44]
    曹磊,宋金明,李学刚,等.中国滨海盐沼湿地碳收支与碳循环过程研究进展[J].生态学报,2013,33(17):5141-5152.
    [45]
    武亚楠,王宇,张振明.黄河三角洲潮沟形态特征对湿地植物群落演替的影响[J].生态科学,2020,39(1):33-41.
    [46]
    赵欣胜,崔保山,孙涛,等.黄河三角洲潮沟湿地植被空间分布对土壤环境的响应[J].生态环境学报,2010,19(8):1855-1861.
    [47]
    张彦军,郭胜利.复杂地形条件下根系对土壤有机碳的贡献[J].环境科学,2019,40(2):961-969.
    [48]
    WANG Y G, LI Y, YE X H, et al. Profile storage of organic/inorganic carbon in soil:from forest to desert[J]. Science of the Total Environment,2010,408(8):1925-1931.
    [49]
    王进欣, 张威, 郭楠, 等. 影响海岸带盐沼土壤有机质, TN和TP含量时空变化的关键因子:潮水和植被[J]. 地理科学, 2016,36(2):247-255.
    [50]
    王杰, 孙志高, 李家兵, 等. 2015年7月末不同淹水条件下闽江河口沼泽土壤中有机碳和氮的分布[J]. 湿地科学, 2018,16(4):559-567.
    [51]
    刘吉平,吕宪国,杨青,等.三江平原环型湿地土壤养分的空间分布规律[J].土壤学报,2006,43(2):247-255.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (368) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return