Citation: | ZHANG Jie, ZHANG Jian, CAO Xiaoqiang, CHEN Xinhan, LIU Huaqing. ENHANCED NITRIFICATION AND DENITRIFICATION BY COUPLING MICROBIAL ELECTROLYSIS CELL IN A SINGLE BED VERTICAL FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 32-37,70. doi: 10.13205/j.hjgc.202306005 |
[1] |
祝惠, 阎百兴, 王鑫壹. 我国人工湿地的研究与应用进展及未来发展建议[J]. 中国科学基金, 2022, 36(3):391-397.
|
[2] |
KUMAR S A, SAMIR B, ISHTIYAQ A. Various types of constructed wetland for wastewater treatment:a review[J]. IOP Conference Series:Earth and Environmental Science, 2022, 1032(1):012026.
|
[3] |
余俊霞, 陈双荣, 刘凌言,等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J]. 环境工程, 2022, 40(1):13-20.
|
[4] |
LIU H Q, HU Z, ZHANG J, et al. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands:a review[J]. Bioresource Technology, 2016:797-805.
|
[5] |
LU M, SU Y L, CHEN Y G, et al. The effects of fulvic acid on microbial denitrification:promotion of NADH generation, electron transfer, and consumption[J]. Applied Microbiology and Biotechnology, 2016, 100(12):5607-5618.
|
[6] |
王宇娜, 国晓春, 卢少勇,等. 人工湿地对低污染水中氮去除的研究进展:效果、机制和影响因素[J]. 农业资源与环境学报, 2021, 38(5):722-734.
|
[7] |
KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems:a review[J]. Bioresource Technology, 2014, 153:351-360.
|
[8] |
DEVI R, ARCHANA S, R. K D, et al. Microbial electrolysis cell as a diverse technology:overview of prospective applications, advancements, and challenges[J]. Energies, 2022, 15(7):2611.
|
[9] |
周钦茂, 郑德聪, 杨暖,等. 微生物电化学法处理氨氮废水研究进展[J]. 应用与环境生物学报, 2022, 28(3):779-786.
|
[10] |
ZHAN G Q, ZHANG L X, LI D P, et al. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell[J]. Bioresource Technology, 2012, 116:271-277.
|
[11] |
薄涛, 翟洪艳, 季民. 微生物电解池在氢气制备中的应用[J]. 现代化工, 2017, 37(8):50-54.
|
[12] |
KATURI K P, ALI M, SAIKALY P E. The role of microbial electrolysis cell in urban wastewater treatment:integration options, challenges, and prospects[J]. Current Opinion in Biotechnology, 2019, 57:101-110.
|
[13] |
孙杏, 胡凯, 雷晨雨,等. 冻融破解预处理剩余污泥及强化微生物电解池处理效能[J]. 环境工程, 2021, 39(4):147-155.
|
[14] |
QU B, FAN B, ZHU S K, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1):100-105.
|
[15] |
ZHAN G Q, LI D P, TAO Y, et al. Ammonia as carbon-free substrate for hydrogen production in bioelectrochemical systems[J]. International Journal of Hydrogen Energy, 2014, 39(23):11854-11859.
|
[16] |
ZHAN G Q, ZHANG L X, TAO Y, et al. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems[J]. Electrochimica Acta, 2014, 135:345-350.
|
[17] |
付晶淼, 赵亚乾, 袁玉杰,等. 人工湿地中的微生物电化学技术耦合体系原理及其演变[J]. 中国给水排水, 2022, 38(22):8-15.
|
[18] |
JU X X, WU S B, HUANG X S, et al. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control[J]. Bioresour Technol, 2014, 169:605-613.
|
[19] |
GU X S, CHEN D Y, WU F, et al. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands:iris pseudacorus for example[J]. Journal of Cleaner Production, 2022, 330:129842.
|
[20] |
CHEN D Y, GU X S, ZHU W Y, et al. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios[J]. Bioresource Technology, 2019, 285:121313.
|
[21] |
程玉周. 垂直流人工湿地除碳脱氮反应动力学研究[D]. 成都:西南交通大学, 2013.
|
[22] |
夏函青, 伍永钢, 付成林,等. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11):4677-4684.
|
[23] |
谢莱, 杨敏, 杨恩喆,等. 生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征[J]. 生物工程学报,2023,39:1-14.
|
[24] |
LEE J W, LEE K H, PARK K Y, et al. Hydrogenotrophic denitrification in a packed bed reactor:effects of hydrogen-to-water flow rate ratio[J]. Bioresource Technology, 2010, 101(11):3940-3946.
|
[25] |
夏函青. 基于人工湿地-微生物电解池(CW-MEC)技术处理含氮废水的效果与机理研究[D]. 芜湖:安徽师范大学, 2020.
|
[26] |
SANATH K, DAEHYEON C, TABISH N M, et al. Ammonia removal by simultaneous nitrification and denitrification in a single dual-chamber microbial electrolysis cell[J]. Energies, 2022, 15(23):9171.
|
[27] |
LIU X H, LIU Y, GUO X C, et al. High degree of contaminant removal and evolution of microbial community in different electrolysis-integrated constructed wetland systems[J]. Chemical Engineering Journal, 2020, 388:124391.
|
[28] |
LIANG D, HE W H, LI C, et al. Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell[J]. Water Research, 2020, 188:116498.
|
[29] |
ZHOU X, JIA L X, LIANG C L, et al. Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland:effects of influent strength[J]. Chemical Engineering Journal, 2018, 334:1842-1850.
|
[30] |
VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresour Technol, 2011, 102(1):334-341.
|