Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Dan-dan, WANG Bing, WANG Bo. TREATMENT OF HIGH CONCENTRATION SULFIDE WASTEWATER BY SODIUM SULFITE OXIDATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 115-120. doi: 10.13205/j.hjgc.202006018
Citation: CUI Jing, MIAO Fenghai, ZHANG Yun, ZHANG He, ZHOU Tao. DISSOLUTION AND EXTRACTION OF PROTEIN FROM SLUDGE VIA A COMBINATION OF ULTRASOUND AND DNA EXTRACTION PHENOL REAGENT ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 71-75,91. doi: 10.13205/j.hjgc.202306010

DISSOLUTION AND EXTRACTION OF PROTEIN FROM SLUDGE VIA A COMBINATION OF ULTRASOUND AND DNA EXTRACTION PHENOL REAGENT ADDITION

doi: 10.13205/j.hjgc.202306010
  • Received Date: 2022-03-28
    Available Online: 2023-09-02
  • Compared with the conventional treatment methods of sludge, the thermal alkali decomposition treatment was a preferred technology because of the high value-added protein products obtained. In this investigation, the mixture material from thermal alkali pretreatment was taken as the raw material, and variables including ultrasonic and chemical addition were investigated. Results showed that, the optimal ultrasonic power, time, initial temperature, pH and the ratio of phenol to DNA extraction reagent were 480 W, 20 min, 38℃, 7.83 and 6%, respectively. Under this condition, the protein dissolution reached 861.71 mg/L, 150% to 200% higher than the control groups. Correlation analysis suggested that except for the ultrasonic time, the effects of other factors on sludge protein concentration were extremely significant. Moreover, the addition of DNA extraction phenol reagent could desorb carbohydrates and proteins inside and outside the cell, and further increase the protein concentration to 861.71 mg/L in the filtrate with the 6% dosage.
  • [1]
    刘子娟,王寅义,徐肖甜,等.剩余污泥碱性发酵产酸及脱水性能研究[J].中国给水排水, 2022, 38(3):92-98.
    [2]
    ODRIOZOLA M, LOUSADA M, SPANJERS H, et al. Effect of sludge characteristics on optimal required dosage of flux enhancer in anaerobic membrane bioreactors[J]. Journal of Membrane Science, 2020, 619:776-786.
    [3]
    孙洋洋,张雨辰,徐苏云.不同来源剩余污泥有机质赋存特征及厌氧消化潜能[J]. 中国给水排水, 2021, 37(11):17-23.
    [4]
    吴春旭,唐明悦,张鸿涛,等. 我国不同地区市政污泥理化性质及其对脱水性能的影响[J]. 环境工程学报,2021,15(1):271-278.
    [5]
    戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考[J]. 给水排水,2017,43(12):1-5.
    [6]
    李超. 酶催化污泥水解提取蛋白质研究[D]. 郑州:郑州大学,2018.
    [7]
    GAO J L, WANG Y C, YAN Y X, et al. Protein extraction from excess sludge by alkali-thermal hydrolysis[J]. Environmental Science and Pollution Research, 2020, 27(8):8628-8637.
    [8]
    张静,赵建伟,孙英杰,等. 热碱预处理后得克隆对污泥厌氧发酵产酸及污泥特性的影响[J]. 中国环境科学,2021,41(3):1255-1263.
    [9]
    李萍,雷莹,李登新. 超声波协同生物法提取剩余污泥中蛋白质的研究[J]. 中国给水排水,2014,30(1):22-25.
    [10]
    夏雄,邓妍,刘威,等. SDS促进复合酶水解法提取剩余污泥蛋白质条件的响应面优化分析[J]. 安全与环境工程,2018,25(6):48-54.
    [11]
    刘改革. 溶菌酶与鼠李糖脂联用强化污泥破解效能及机制研究[D]. 哈尔滨:哈尔滨工业大学, 2020.
    [12]
    郭巧云,郭锦,胡骁,等. 活性污泥总蛋白提取方法的比较[J]. 环境科学与技术,2015,38(6):106-109

    ,176.
    [13]
    FROLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30:1749-1758.
    [14]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002,258-268.
    [15]
    LIU L Y, RAN B, HUA C. Improved dewaterability of drilling waste sludge by ultrasonic and potassium permanganate co-treatment[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):356-367.
    [16]
    丁静雨. 不同强度超声波促进酶解污泥提取蛋白质的研究[D]. 郑州:郑州大学,2018.
    [17]
    高健磊,李超,闫怡新,等. 超声波强化酶法提取污泥蛋白研究[J]. 四川环境,2018,37(2):38-44.
    [18]
    陆钧皓,李登新. 超声波与复合酶联合提取剩余污泥蛋白的研究[J]. 环境科学与技术,2015,38(10):53-58.
    [19]
    YAN Y, QIN L, GAO J, et al. Protein extraction and sludge dewatering performance of ultrasound-assisted enzymatic hydrolysis of excess sludge[J]. Environmental Science and Pollution Research, 2020, 27(15):18317-18328.
    [20]
    SHI X C, ZHU L, LI B, et al. Surfactant-assisted thermal hydrolysis off waste activated sludge for improved dewaterability, organic release, and volatile fatty acid production[J]. Waste Management, 2021, 124:339-347.
    [21]
    HE Q Y, XU P, ZHANG C, et al. Influence of surfactants on anaerobic digestion of waste activated sludge:acid and methane production and pollution removal[J]. Critical Reviews in Biotechnology, 2019, 39(5):746-757.
    [22]
    倪敏,李祥,刘婷婷,等.厌氧氨氧化活性污泥DNA高效提取方法探究[J].环境科学与技术, 2019, 42(10):83-87.
    [23]
    GIAGNONI L, MAGHERINI F, LANDI L, et al. Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34[J]. Biology & Fertility of Soils, 2012, 48(4):425-433.
  • Relative Articles

    [1]LI Zhenhua. AN EXPERIMENTAL STUDY ON HIGH EFFICIENCY INTERCEPTION AND PURIFICATION FOR URBAN RAINWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 108-115. doi: 10.13205/j.hjgc.202412014
    [2]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [3]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [4]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [5]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [6]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [7]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [8]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [9]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [10]TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030
    [11]XIANG Jia-jia. GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 63-68,91. doi: 10.13205/j.hjgc.202109010
    [12]XIAO Yong, MO Pei, YIN Shi-yang, LIU Hong-lu, ZHANG Yun-hui. HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013
    [13]SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
    [14]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [15]WANG Hai-shan, ZOU Ping, DAI Ben, ZHU Fang-fang, WANG Zi-tong, AIXIAN Si-qi. OPTIMIZING BIOLOGICAL COMBINATION TECHNOLOGY TO IMPROVE PURIFICATION EFFICIENCY OF BLACK-ODOR WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 24-32,39. doi: 10.13205/j.hjgc.202101003
    [16]CHEN Si-li, YI Zhong-yuan, WANG Ji, PAN Chao-yi, CHANG Sha, GUO Qing-wei, ZHOU Jun-guang, SUN Lan. CASE STUDY ON REMEDIATION OF DIESEL CONTAMINATED SOIL AND GROUNDWATER BY ELUENT-EXTRACTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 178-182. doi: 10.13205/j.hjgc.202001029
    [17]ZHANG Ling-ling, TERIGELE, LI Jing-nan, ZHAO Yan-hui, YAN Qing-qing, ER Wen-fei. APPLICATION OF ULTRAFINE BUBBLE OXYGEN ENRICHMENT AND BIOLOGICAL ACTIVATION TECHNOLOGY IN BLACK AND ODOROUS WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 66-71,156. doi: 10.13205/j.hjgc.202011011
    [18]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
  • Cited by

    Periodical cited type(1)

    1. 纪昊辰,何如民. 硫化钠废液处理技术研究进展. 广东化工. 2022(23): 157-158+111 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.8 %FULLTEXT: 13.8 %META: 83.6 %META: 83.6 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.2 %其他: 0.2 %China: 4.1 %China: 4.1 %Italy: 0.2 %Italy: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.7 %上海: 2.7 %临汾: 0.2 %临汾: 0.2 %北京: 5.3 %北京: 5.3 %南京: 0.7 %南京: 0.7 %南充: 0.7 %南充: 0.7 %南昌: 0.7 %南昌: 0.7 %南通: 0.2 %南通: 0.2 %厦门: 0.5 %厦门: 0.5 %台州: 0.2 %台州: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 3.1 %天津: 3.1 %太原: 0.2 %太原: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %平凉: 0.2 %平凉: 0.2 %广州: 0.7 %广州: 0.7 %廊坊: 0.7 %廊坊: 0.7 %张家口: 2.4 %张家口: 2.4 %徐州: 0.2 %徐州: 0.2 %德州: 0.2 %德州: 0.2 %成都: 0.5 %成都: 0.5 %无锡: 0.7 %无锡: 0.7 %昆明: 0.7 %昆明: 0.7 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.4 %杭州: 1.4 %格林维尔: 1.0 %格林维尔: 1.0 %梧州: 0.2 %梧州: 0.2 %武汉: 0.7 %武汉: 0.7 %汕头: 0.5 %汕头: 0.5 %沈阳: 0.7 %沈阳: 0.7 %济源: 0.5 %济源: 0.5 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.2 %濮阳: 0.2 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 34.5 %西宁: 34.5 %西安: 1.7 %西安: 1.7 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %长治: 0.5 %长治: 0.5 %阳泉: 1.0 %阳泉: 1.0 %青岛: 0.5 %青岛: 0.5 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他其他ChinaItaly[]上海临汾北京南京南充南昌南通厦门台州呼和浩特哈尔滨嘉兴天津太原宣城常州常德平凉广州廊坊张家口徐州德州成都无锡昆明晋城朝阳杭州格林维尔梧州武汉汕头沈阳济源深圳温州漯河濮阳石家庄芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长治阳泉青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(7) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return