Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Yajie, CUI Yanzhi, LIU Haidong, BIAN Huafeng, LI Junchao, ZHOU Yan. ANALYSIS OF SPATIAL DIFFERENCES AND COUNTERMEASURES OF PRECISION OF THE RURAL DOMESTIC SEWAGE TREATMENT IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 47-53,156. doi: 10.13205/j.hjgc.202306007
Citation: XUE Zitao, CHU Xuefei, XING Libo, SUN Xiaojie, XING Meiyan. PYROLYSIS CHARACTERISTICS AND MATERIAL TRANSFORMATION CHARACTERISTICS OF CAMPUS ORGANIC WASTE TREATED BY VERMICOMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 82-91. doi: 10.13205/j.hjgc.202306012

PYROLYSIS CHARACTERISTICS AND MATERIAL TRANSFORMATION CHARACTERISTICS OF CAMPUS ORGANIC WASTE TREATED BY VERMICOMPOSTING

doi: 10.13205/j.hjgc.202306012
  • Received Date: 2022-06-05
    Available Online: 2023-09-02
  • The thermal stability and material transformation characteristics of organic waste treated by vermicomposting were investigated with campus kitchen waste assisted by campus green waste, wasted paper and sawdust. The results indicated that vermicomposting with kitchen waste, leaves and waste paper (1:1:1, by dry weight) with a vermicomposting cycle of 10 weeks, gained better organic stabilization and resource recovery effect. Furthermore, the thermogravimetric analysis showed that the weight loss of the heap decreased from 71.44% to 41.44% after vermicomposting, and the stability of vermicompost was enhanced. Additionally, the kinetic model deduced that the activation energy of the composting group decreased by 6.163 kJ/mol after vermicomposting, indicating that the composting process was accelerated. Humic acid and protein content increased by 20.13% and 17.3% after composting. The content of available nitrogen and available phosphorus in vermicompost increased by 6.54 times and 1.82 times, respectively, after vermicomposting. The vermicomposting treatment of campus kitchen waste, green waste and waste paper effectively accelerated the composting process, improved the degree of organic stabilization and resource utilization, and has the potential in realizing onsite treatment of campus organic wastes.
  • [1]
    李欢,周颖君,刘建国,等.我国厨余垃圾处理模式的综合比较和优化策略[J].环境工程学报, 2021, 15(7):2398-2408.
    [2]
    王晓槐,李军,魏肖楠,等."无废城市"建设下校园餐厨垃圾处理现状及对策研究:以兰州高校为例[J].环境科学与管理, 2021, 46(10):96-100.
    [3]
    张晓婷. 兰州市高校食堂餐厨垃圾处理监管研究[D].兰州:西北师范大学, 2019.
    [4]
    YANG F, LI G X, YANG Q Y, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7):1393-1399.
    [5]
    DING Y W, WEI J, XIONG J J, et al. Effects of operating parameters on in situ NH3 emission control during kitchen waste composting and correlation analysis of the related microbial communities[J]. Environmental Science and Pollution Research, 2019, 26(12):11756-11766.
    [6]
    WANG X J, ZHANG W W, GU J, et al. Effects of different bulking agents on the maturity, enzymatic activity, and microbial community functional diversity of kitchen waste compost[J]. Environmental Technology, 2016, 37(20):2555-2563.
    [7]
    LI M, LI F, ZHOU J, et al. Fallen leaves are superior to tree pruning as bulking agents in aerobic composting disposing kitchen waste[J]. Bioresource Technology, 2022, 346:126374.
    [8]
    陈瑞建,章伟伟,云虹,等.废纸在人造板领域中的回收利用技术及研究进展[J].林产工业, 2019, 46(7):7-10.
    [9]
    BHAT S A, SINGH J, VIG A P. Earthworms as organic waste managers and biofertilizer producers[J]. Waste and Biomass Valorization, 2018, 9(7):1073-1086.
    [10]
    NDEGWA P M, THOMPSON S A. Effects of C-to-N ratio on vermicomposting of biosolids[J]. Bioresource Technology, 2000, 75(1):7-12.
    [11]
    SOOBHANY N, GUNASEE S, RAGO Y P, et al. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity[J]. Bioresource Technology, 2017, 236:11-19.
    [12]
    HANC A, ENEV V, HREBECKOVA T, et al. Characterization of humic acids in a continuous-feeding vermicomposting system with horse manure[J]. Waste Management, 2019, 99:1-11.
    [13]
    SRIVASTAVA V, GOEL G, THAKUR V K, et al. Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment[J]. Journal of Environmental Management, 2020, 255:109914.
    [14]
    LU M Y, SHI X S, FENG Q, et al. Effects of humic acid modified oyster shell addition on lignocellulose degradation and nitrogen transformation during digestate composting[J]. Bioresource Technology, 2021, 329:124834.
    [15]
    WANG X Q, WANG M M, ZHANG J, et al. Contributions of the biochemical factors and bacterial community to the humification process of in situ large-scale aerobic composting[J]. Bioresource Technology, 2021, 323:124599.
    [16]
    KURAJICA L, UJEVIĆ BOŠNJAK M, KINSELA A S, et al. Effects of changing supply water quality on drinking water distribution networks:changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release[J]. Science of the Total Environmen, 2021, 762:144159.
    [17]
    RODRÍGUEZ-VIDAL F J, GARCÍA-VALVERDE M, ORTEGA-AZABACHE B, et al. Using excitation-emission matrix fluorescence to evaluate the performance of water treatment plants for dissolved organic matter removal[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 249:119298.
    [18]
    MAGO M, YADAV A, GUPTA R, et al. Management of banana crop waste biomass using vermicomposting technology[J]. Bioresource Technology, 2021, 326:124742.
    [19]
    ARORA M, KAUR A. Azolla pinnata, Aspergillus terreus and Eisenia fetida for enhancing agronomic value of paddy straw[J]. Scientific Reports, 2019, 9(1):1341.
    [20]
    BORUAH T, BARMAN A, KALITA P, et al. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida[J]. Bioresource Technology, 2019, 294:122147.
    [21]
    DEVI C, KHWAIRAKPAM M. Management of invasive weed Parthenium hysterophorus through vermicomposting using a polyculture of Eisenia fetida and Eudrilus eugeniae[J]. Environmental Science and Pollution Research, 2021, 28(23):29710-29719.
    [22]
    SHARMA D, PANDEY A K, YADAV K D, et al. Response surface methodology and artificial neural network modelling for enhancing maturity parameters during vermicomposting of floral waste[J]. Bioresource Technology, 2021, 324:124672.
    [23]
    李英凯,王亚利,杨晓磊,等.蚯蚓堆肥处理畜禽粪便的影响因素及其产物的应用综述[J].环境工程,2020,38(1):162-166

    , 127.
    [24]
    ZMORA-NAHUM S, MARKOVITCH O, TARCHITZKY J, et al. Dissolved organic carbon (DOC) as a parameter of compost maturity[J]. Soil Biology and Biochemistry, 2005, 37(11):2109-2116.
    [25]
    高健. 基于热重分析的延边地区主要乔木树种的燃烧性研究[D].哈尔滨:东北林业大学,2020.
    [26]
    YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13):1781-1788.
    [27]
    CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24):5701-5710.
  • Relative Articles

    [1]ZHANG Tongliang, ZHENG Tianlong, LI Wenkai, CHENG Wenhu, ZHU Chang, MEN Yingxin, CAO Yingnan, LIU Jianguo, YUAN Hongchao. PRESENT SITUATION AND SUGGESTION OF RURAL SEWAGE TREATMENT IN INNER MONGOLIA AUTONOMOUS REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 50-55. doi: 10.13205/j.hjgc.202410007
    [2]FENG Yuan, ZHAO Lüxuan, LIU Bingyan, WU Kaiqing, HE Yanfang, LI Li, HUANG Junkai, WENG Rui, LIANG Mingqi. CURRENT SITUATION AND SUGGESTIONS FOR AIR POLLUTION EMISSION CONTROL OF STEEL INDUSTRY IN GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 63-70. doi: 10.13205/j.hjgc.202406008
    [3]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [4]GU Xuedian, LIU Dongmei, LI Yuting, ZHANG Shangjun, CHEN Yidi, FENG Yujie, REN Nanqi. RESEARCH ON GREEN AND LOW CARBON TREATMENT PATH OF URBAN WATER POLLUTION IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 27-33. doi: 10.13205/j.hjgc.202412004
    [5]GUO Songjun, WANG Junhui, CHEN Laiguo, LIANG Xiaoming, LU Qing, ZHU Lihua, LIU Ming. COUNTERMEASURES AND SUGGESTIONS FOR IN-DEPTH TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN PRINTING INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 202-209,228. doi: 10.13205/j.hjgc.202303027
    [6]LÜ Zhiwen, LI Yuqing, YANG Jingjing, CAO Xiaoqiang, ZHANG Jian, LIU Huaqing, WANG Gang. PREPARATION OF SOLID WASTE-BASED POROUS MATERIALS BY PHYSICAL FOAMING TO CAPTURE AND STORE CO2[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 38-46. doi: 10.13205/j.hjgc.202306006
    [7]JIANG Yanbo, LING Wei, WEI Chunzhong, WEI Yuan, WU Chunfeng, WANG Chao, MENG Fangang. ENHANCEMENT OF COMPOSITE SOLID CARBON SOURCES ON NITROGEN REMOVAL PERFORMANCE OF A RURAL DOMESTIC SEWAGE TREATMENT PROCESS AND FUNCTIONAL BACTERIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 62-70. doi: 10.13205/j.hjgc.202210009
    [8]ZHANG Ke, TIAN Shuangchao, DOU Xueyan, ZHANG Chang, DONG Lixin, ZHU Jinliang, XIAO Benyi, LIU Qixin, LIU Jianwei, LIU Junxin. ANAEROBIC/AEROBIC BIOLOGICAL CONTACT OXIDATION PROCESS COUPLED WITH MICROBIAL FUEL CELL TO TREAT RURAL DOMESTIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 139-146. doi: 10.13205/j.hjgc.202203021
    [9]ZHANG Zhi-jie, WEN Fei, ZHANG Ya-qun, ZHOU Jing, FENG Ai-ping. CHARACTERISTICS AND SOURCE ANALYSIS OF NON-POINT SOURCE POLLUTION LOAD IN THE YELLOW RIVER BASIN ON A REGIONAL SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 81-88,142. doi: 10.13205/j.hjgc.202209011
    [10]HAO Shuran, CHEN Zhuo, XU Ao, WU Yinhu, LI Guoqiang, NI Xinye, HU Hongying. ANALYSIS OF WATER REUSE SITUATIONS AND POTENTIALS IN MAIN CITIES IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 1-8,79. doi: 10.13205/j.hjgc.202210001
    [11]SONG Da-gang, LI Hui-bin, WANG Jiu-chen, MEI Zi-li, RAN Yi. BIBLIOMETRIC ANALYSIS OF RESEARCH TRENDS ON RURAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 16-24,30. doi: 10.13205/j.hjgc.202105003
    [12]CHEN An-yao, LUO An-cheng, LIANG Zhi-wei, LIN Qiang, JIA Rui-jie, PING Shao-wei, DU Ping. AN EXPLORATORY RESEARCH ON ONLINE MONITORING METHOD FOR RURAL DOMESTIC SEWAGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 227-233. doi: 10.13205/j.hjgc.202108031
    [13]LUO Qi-jin, HE Chen-hui, CHEN Jian-yu, LI Jin-shi, YI Xin-gui. TREATMENT OF RURAL DOMESTIC SEWAGE BY AUTONOMOUS BREATHING ECOLOGICAL FILTER TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 58-63. doi: 10.13205/j.hjgc.202101008
    [14]ZHANG Ji-ku, SUN Mian. TREATMENT OF RURAL DOMESTIC SEWAGE BY AN AIR LIFTING A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 18-23. doi: 10.13205/j.hjgc.202101002
    [15]LIU Xing, LIU Wen-li, JIANG Xia, GUO Ji-feng, HUANG Wei, LIU Rui, ZHANG Cong. ANALYSIS OF TEMPORAL AND SPATIAL DISTRIBUTION OF RURAL DOMESTIC SEWAGE AND STATUS OF TREATMENT FACILITIES IN PLAIN RIVER NETWORK AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 38-44. doi: 10.13205/j.hjgc.202012007
    [17]Gao Yangjun, Geng Chunnv, Cao Yong. THREE ASSESSMENT METHODS ON HEAVY METALS CONTAMINATION IN RIVER SEDIMENTS OF SHANGHAI SUBURBAN AREA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 121-125. doi: 10.13205/j.hjgc.201510027
    [18]Sun Zijie Tian Kan Liu Tao Tian Honghai, . CURRENT SITUATION AND COUNTERMEASURES ON THE DEVELOPMENT ON HEAVY METAL REFERENCE MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 136-140. doi: 10.13205/j.hjgc.201503027
  • Cited by

    Periodical cited type(6)

    1. 崔艳智,黄亚捷,李君超,刘海东,贾小梅,周岩. 新时期京津冀农村生活污水协同治理实施路径. 中国环境管理. 2025(01): 30-39 .
    2. 张博,王凌生,和娴娴,张兆祥,栗勇田. 华北地区某沿海县域农村生活污水治理情况及建议. 能源与环境. 2025(01): 97-99+138 .
    3. 陈欣,冯震江,徐俏,夏瑞,马翠梅,夏星辉. 近十年来黄河中下游河水硝酸盐含量和来源变化及影响因素分析. 环境科学学报. 2025(03): 241-250 .
    4. 李海生. 黄河流域生态环境问题系统识别与展望. 环境科学研究. 2024(01): 1-10 .
    5. 李中华,井柳新,洪源,王帅,续衍雪. 基于水质提升的黄河流域城市尺度问题分析及对策研究. 环境科学研究. 2024(01): 51-62 .
    6. 郭钟锐,王东,孙滢斐,付根深. 郑州市新密市的农村污水治理及长效管理机制探索. 水处理技术. 2024(11): 14-19 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.9 %FULLTEXT: 9.9 %META: 86.1 %META: 86.1 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.3 %其他: 0.3 %上海: 4.2 %上海: 4.2 %东京: 0.8 %东京: 0.8 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 2.8 %兰州: 2.8 %北京: 6.4 %北京: 6.4 %十堰: 0.6 %十堰: 0.6 %南京: 2.2 %南京: 2.2 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %台州: 0.8 %台州: 0.8 %唐山: 0.3 %唐山: 0.3 %大同: 0.6 %大同: 0.6 %大连: 0.3 %大连: 0.3 %天津: 2.8 %天津: 2.8 %太原: 0.8 %太原: 0.8 %娄底: 1.4 %娄底: 1.4 %安康: 1.1 %安康: 1.1 %宜宾: 0.6 %宜宾: 0.6 %宜春: 0.3 %宜春: 0.3 %宣城: 0.8 %宣城: 0.8 %常德: 0.6 %常德: 0.6 %广州: 0.8 %广州: 0.8 %张家口: 0.3 %张家口: 0.3 %成都: 1.1 %成都: 1.1 %扬州: 0.3 %扬州: 0.3 %昆明: 3.1 %昆明: 3.1 %晋城: 0.3 %晋城: 0.3 %普洱: 0.6 %普洱: 0.6 %杭州: 1.7 %杭州: 1.7 %格兰特县: 0.3 %格兰特县: 0.3 %桂林: 0.6 %桂林: 0.6 %武汉: 5.0 %武汉: 5.0 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.3 %泰安: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 1.7 %济南: 1.7 %淄博: 0.6 %淄博: 0.6 %淮安: 1.7 %淮安: 1.7 %深圳: 0.3 %深圳: 0.3 %漯河: 2.5 %漯河: 2.5 %烟台: 0.6 %烟台: 0.6 %甘孜: 0.6 %甘孜: 0.6 %福州: 0.6 %福州: 0.6 %芒廷维尤: 6.7 %芒廷维尤: 6.7 %芝加哥: 0.8 %芝加哥: 0.8 %衡阳: 0.3 %衡阳: 0.3 %西宁: 6.4 %西宁: 6.4 %西安: 3.1 %西安: 3.1 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 9.2 %郑州: 9.2 %重庆: 0.8 %重庆: 0.8 %金昌: 0.3 %金昌: 0.3 %银川: 0.3 %银川: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %青岛: 0.6 %青岛: 0.6 %黄石: 0.6 %黄石: 0.6 %其他其他上海东京佛山保定兰州北京十堰南京南昌南通台州唐山大同大连天津太原娄底安康宜宾宜春宣城常德广州张家口成都扬州昆明晋城普洱杭州格兰特县桂林武汉沈阳泰安洛阳济南淄博淮安深圳漯河烟台甘孜福州芒廷维尤芝加哥衡阳西宁西安贵阳运城遵义邯郸郑州重庆金昌银川长沙长治青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(4) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return