Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Yaning, ZHU Weihuang, DONG Ying, WU Xijun, LIU Jing. EFFECT OF REDOX CONDITION AND MICROBIAL ACTION ON HEAVY METALS TRANSFORMATION IN RESERVOIR SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 101-108. doi: 10.13205/j.hjgc.202306014
Citation: ZHANG Yaning, ZHU Weihuang, DONG Ying, WU Xijun, LIU Jing. EFFECT OF REDOX CONDITION AND MICROBIAL ACTION ON HEAVY METALS TRANSFORMATION IN RESERVOIR SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 101-108. doi: 10.13205/j.hjgc.202306014

EFFECT OF REDOX CONDITION AND MICROBIAL ACTION ON HEAVY METALS TRANSFORMATION IN RESERVOIR SEDIMENTS

doi: 10.13205/j.hjgc.202306014
  • Received Date: 2022-07-28
    Available Online: 2023-09-02
  • In order to explore the migration and transformation mechanism of heavy metals between sediment and water interface, we took the surface sediment of a reservoir in Northwest China as the research object. By controlling redox conditions, an indoor simulation experiment was designed including heat sterilization and adding carbon sources to the sediments. It was found that after 28 days of aerobic cultivation, the concentration of six heavy metals in the overlying water decreased by 46.3%~100%, and the total content of heavy metals in the sediment all increased; the content of active form of the six heavy metals decreased, and the content of residual form increased, especially the ratio of residual form content to total amount of Cd and Pb (R/T) increased by 33.32% and 16.11% respectively, compared with the original sample; under anaerobic condition, the trend of concentration change was opposite, and the concentration of Pb in the overlying water was 2.36 times higher than the initial one. Under the action of microorganisms, the concentration of six heavy metals in the overlying water was lower than that of the high-temperature sterilization treatment, while the total amount of heavy metals in the sediment was increased. At the same time, the R/T values of six heavy metals, after adding carbon source, were higher than those of sterilization treatment. This indicated that microbial activity can immobilize heavy metals, causing them to migrate from overlying water to sediments, and converting active states into low-risk residual states, thereby reducing the toxicity of heavy metals to human health. Therefore, increasing the dissolved oxygen content and microbial population in reservoirs played an important role in reducing the activity of heavy metals in sediments, enriching and fixing heavy metals.
  • [1]
    ZHAO W T, GU C H, YING H, et al. Fraction distribution of heavy metals and its relationship with iron in polluted farmland soils around distinct mining areas[J].Applied Geochemistry,2021,130:104969.
    [2]
    LIANG G N, ZHANG B, LIN M, et al. Evaluation of heavy metal mobilization in creek sediment:influence of RAC values and ambient environmental factors[J].Science of the Total Environment,2017,607/608:1339-1347.
    [3]
    华东理工大学分析化学教研组,四川大学工科化学基础课程教学基地.分析化学[M].6版. 北京:高等教育出版社,2009,440.
    [4]
    王禄仕,张亚宁,朱维晃.汤峪水源水库沉积物中重金属形态分布特征及其潜在生态风险评价[J].西安建筑科技大学学报(自然科学版),2010,42(4):567-572.
    [5]
    WANG Z, LUO Y F, ZHENG C L, et al.Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region:a case study of Bayan Obo in northwestern China[J].Human and Ecological Risk Assessment, 2020,27(5/6):1276-1295.
    [6]
    XIONG B, LI R P, JOHNSON D, et al.Spatial distribution, risk assessment, and source identification of heavy metals in water from the Xiangxi River, Three Gorges Reservoir Region, China[J].Environmental Geochemistry and Health,2020,43(2):915-930.
    [7]
    吴蕾,刘桂建,周春财,等.巢湖水体可溶态重金属时空分布及污染评价[J].环境科学,2018,39(2):738-747.
    [8]
    张密,文波,黄凌霞,等.氧化还原条件对城市水体沉积物重金属迁移转化的影响[J].华东师范大学学报(自然科学版),2016(2):160-170.
    [9]
    陈春乐,田甜,郭孝玉,等.淋洗修复后残留土壤中重金属的再释放及环境风险[J].环境科学学报,2020,40(9):3405-3414.
    [10]
    刘洁,孙可,韩兰芳.生物炭对土壤重金属形态及生物有效性影响的研究进展[J].环境化学,2021,40(6):1643-1658.
    [11]
    RAURET G, LO'PEZ-SA'NCHEZ J. F, SAHUQUILLO A, et al.Improvement of the BCR three step sequential extraction procedure prior to the certifification of new sediment and soil reference materials[J].J Environ Monit,1999,1:57-61.
    [12]
    常春英,曹浩轩,陶亮,等.固化/稳定化修复后土壤重金属稳定性及再活化研究进展[J].土壤,2021,53(4):682-691.
    [13]
    钟松雄,尹光彩,陈志良,等.Eh、pH和铁对水稻土砷释放的影响机制[J].环境科学,2017,38(6):2530-2537.
    [14]
    KELDERMAN P, OSMAN A A. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands)[J].Water Research,2007,41(18):4251-4261.
    [15]
    杨宾,罗会龙,刘士清,等.淹水对土壤重金属浸出行为的影响及机制[J].环境工程学报,2019,13(4):936-943.
    [16]
    陶玲,刘伟,刘瑞珍,等.酸活化坡缕石对土壤中Cd的钝化效果研究[J].岩石矿物学杂志,2021,40(4):795-803.
    [17]
    朱成斌,胡菁,龙云川,等.贵州草海沉积物重金属元素分布特征及健康风险评价[J].环境科学学报,2021,41(6):2212-2221.
    [18]
    王书航,王雯雯,姜霞,等. 蠡湖沉积物重金属形态及稳定性研究[J].环境科学,2013,34(9):3562-3571.
    [19]
    KUBICKI J D, TUNEGA D, KRAEMER S. A density functional theory investigation of oxalate and Fe(Ⅱ) adsorption onto the (010) goethite surface with implications for ligand- and reduction-promoted dissolution[J].Chemical Geology,2017, 464:14-22.
    [20]
    LUEDER U, BO B J,KAPPLER A, et al. Photochemistry of iron in aquatic environments[J].Environmental Science:Processes and Impacts,2020,22(1):12-24.
    [21]
    胡世文,刘同旭,李芳柏,等.土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报,2022,59(1):54-65.
    [22]
    AEPPLI M, VRANIC S,KAEGI R, et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite[J].Environmental Science and Technology,2019,53(15):8736-8746.
    [23]
    李冉.生物炭与菌剂对猪粪堆肥中重金属形态转化的影响研究[D].保定:河北农业大学,2018.
    [24]
    段磊,孙亚乔,童秀娟,等.动水条件下沉积物-水界面微生物与铬的相互作用机理[J].生态环境学报,2020,29(7):1412-1418.
    [25]
    GAO Y J,JIA J L,XI B D,et al.Divergent response of heavy metal bioavailability in soil rhizosphere to agricultural land use change from paddy fields to various drylands[J].Environmental Science:Processes and Impacts,2021,23(3):417-428.
    [26]
    RAJBONGSHI A, GOGOI S B.A review on anaerobic microorganisms isolated from oil reservoirs[J].World Journal of Microbiology and Biotechnology,2021,37(7):111.
  • Relative Articles

    [1]WANG Libiao, WANG Xuesong, WU Weifeng, ZHOU Huazhen, ZHENG Jiajun, ZHANG Miaojia. EFFICIENCY ASSESSMENT AND DISPATCH OPTIMIZATION OF WATER PUMP OPERATIONS AT THE HONGPAN WATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 140-145. doi: 10.13205/j.hjgc.202411015
    [2]WANG Lei, YU Kun, CHEN Hui, MAO Zhekai, ZHANG Lingqin, XU Yuntao. APPLICATION OF UNMANNED INSPECTION IN WATER SUPPLY PIPELINE NETWORK BASED ON THE FUSION OF FIBER OPTIC SENSING AND VIDEO AI TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 59-63. doi: 10.13205/j.hjgc.202311010
    [3]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [4]SONG Wenke, WANG Shanyue, TAO Tao. A LEAKAGE ZONE IDENTIFICATION METHOD FOR WATER DISTRIBUTION NETWORKS BASED ON VIRTUAL PRESSURE PARTITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 184-191. doi: 10.13205/j.hjgc.202307025
    [5]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [6]LI Cong, DU Rui, PENG Yongzhen. NITROGEN REMOVAL EFFICIENCY AND CARBON SOURCE UTILIZATION CHARACTERISTICS OF PARTIAL DENITRIFICATION COUPLING ANAMMOX PROCESSES WITH DIFFERENT SLUDGE AGGREGATION MODES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 1-9. doi: 10.13205/j.hjgc.202309001
    [7]CHEN Xinyu, HOU Bingqian, GENG Ru, ZHOU Xiangtong, WU Zhiren, WEI Jing. A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 251-259. doi: 10.13205/j.hjgc.202211033
    [8]LI Ruiting, ZHANG Wenrui, LI Aimin, SHUANG Chendong, ZHOU Qing, SHI Peng. REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030
    [9]HONG Yiqun, CHEN Liping, GONG Yanfeng, XUE Fangling, ZHOU Yanjie, WANG Shiling. EFFECT OF BIOFILM ON SUSPENDED PARTICLES TRANSPORT IN POROUS MEDIA BASED ON LBM-DEM COUPLING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 101-108. doi: DOI:10.13205/j.hjgc.202207015
    [10]WANG Jiaquan, LI Zhirong, HUANG Chuyu, LI Zhaomin, XIN Kunlun. LEAKAGE LOCATION METHODS OF WATER DISTRIBUTION NETWORK BASED ON TEMPORAL AND PRESSURE SPATIAL FEATURES WITH PHYSICAL EXPERIMENT VERIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 233-240. doi: 10.13205/j.hjgc.202206030
    [11]LI Junyu, LIU Shuming, WU Xue, XIE Tao, JIN Ye. OPTIMIZATION OF URBAN WATER SUPPLY NETWORK BASED ON DYNAMIC PRUNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 226-232,153. doi: 10.13205/j.hjgc.202206029
    [12]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [13]SUN Hao, YU Tong, YIN Hao-shuai, ZHAO Fei, SHI Xue-qing, BI Xue-jun. RESEARCH PROGRESS ON BIOFOULING OF REVERSE OSMOSIS AND ITS MONITORING AND CONTROL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 62-72. doi: 10.13205/j.hjgc.202107007
    [14]KANG Xiao-feng, WANG Li-sheng, LIU Chun, LIU Yan-chen, HUANG Xia. RESEARCH PROGRESS OF NITROGEN REMOVAL IN MEMBRANE AERATED BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 38-45. doi: 10.13205/j.hjgc.202107004
    [15]WAN Ming-yue, DU Ji-ming, LI Jun, LI Yi, WANG Long-fei. INFLUENCE OF FLOWING AND STATIC WATER CONDITIONS ON MICROBIAL COMMUNITIES OF BIOFILMS ATTACHED ON SURFACE OF HYDRAULIC CONCRETE STRUCTURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 35-40,69. doi: 10.13205/j.hjgc.202002004
    [16]Liu Qiang, Zhao Taixin, Zhao Changshuang, Yan Meng. MICRO-POLLUTED LAKE WATER TREATMENT BY A FLOTATION/POROUS BALL/MEMBRANE INTEGRATED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 11-14. doi: 10.13205/j.hjgc.201501003
    [17]Duan Huajie, Tang Zhijian, Zhang Yuefeng, Zheng Pu, Zhu Guangcan, Wang Guangyuan. SIMULATION ON NITRIFICATION PERFORMANCE IN PULSE TRICKLING FILTER BASED ON BIOFILM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 53-57. doi: 10.13205/j.hjgc.201504012
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 88.3 %META: 88.3 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.3 %其他: 22.3 %其他: 1.1 %其他: 1.1 %China: 0.4 %China: 0.4 %上海: 3.9 %上海: 3.9 %东莞: 0.7 %东莞: 0.7 %中山: 0.4 %中山: 0.4 %保定: 0.4 %保定: 0.4 %北京: 2.5 %北京: 2.5 %十堰: 0.4 %十堰: 0.4 %南京: 4.6 %南京: 4.6 %厦门: 0.7 %厦门: 0.7 %台北: 0.4 %台北: 0.4 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %喀什: 1.8 %喀什: 1.8 %大同: 0.7 %大同: 0.7 %天津: 2.8 %天津: 2.8 %宜春: 0.7 %宜春: 0.7 %常州: 0.4 %常州: 0.4 %常德: 0.7 %常德: 0.7 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %张家界: 0.4 %张家界: 0.4 %成都: 0.4 %成都: 0.4 %扬州: 1.1 %扬州: 1.1 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 3.5 %杭州: 3.5 %桂林: 0.4 %桂林: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %河内: 0.4 %河内: 0.4 %济南: 0.4 %济南: 0.4 %温州: 0.7 %温州: 0.7 %湘潭: 0.7 %湘潭: 0.7 %漯河: 2.8 %漯河: 2.8 %澳门: 2.1 %澳门: 2.1 %福州: 1.8 %福州: 1.8 %秦皇岛: 0.7 %秦皇岛: 0.7 %绍兴: 1.1 %绍兴: 1.1 %芒廷维尤: 8.9 %芒廷维尤: 8.9 %芝加哥: 3.5 %芝加哥: 3.5 %葫芦岛: 0.4 %葫芦岛: 0.4 %西宁: 7.1 %西宁: 7.1 %西安: 1.1 %西安: 1.1 %西雅图: 0.4 %西雅图: 0.4 %贵阳: 3.9 %贵阳: 3.9 %运城: 1.1 %运城: 1.1 %连云港: 0.4 %连云港: 0.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.1 %郑州: 1.1 %重庆: 1.8 %重庆: 1.8 %长春: 0.4 %长春: 0.4 %长沙: 0.7 %长沙: 0.7 %马鞍山: 1.1 %马鞍山: 1.1 %其他其他China上海东莞中山保定北京十堰南京厦门台北合肥呼和浩特哈尔滨喀什大同天津宜春常州常德广州弗吉张家口张家界成都扬州昆明晋城朝阳杭州桂林武汉沈阳河内济南温州湘潭漯河澳门福州秦皇岛绍兴芒廷维尤芝加哥葫芦岛西宁西安西雅图贵阳运城连云港遵义邯郸郑州重庆长春长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (193) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return