Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DONG Liang, ZHANG Yi, SHEN Huanyu, LI Jiansong, ZENG Tao, XU Yinxiang, CUI Yahui, ZHAO Tong. EFFECT OF GAP HEIGHT OF BASE SLOT ON LIQUID FLOW FIELD AND OXYGEN MASS TRANSFER IN A BIOLOGICAL FLUIDIZED BED[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 109-116. doi: 10.13205/j.hjgc.202306015
Citation: DONG Liang, ZHANG Yi, SHEN Huanyu, LI Jiansong, ZENG Tao, XU Yinxiang, CUI Yahui, ZHAO Tong. EFFECT OF GAP HEIGHT OF BASE SLOT ON LIQUID FLOW FIELD AND OXYGEN MASS TRANSFER IN A BIOLOGICAL FLUIDIZED BED[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 109-116. doi: 10.13205/j.hjgc.202306015

EFFECT OF GAP HEIGHT OF BASE SLOT ON LIQUID FLOW FIELD AND OXYGEN MASS TRANSFER IN A BIOLOGICAL FLUIDIZED BED

doi: 10.13205/j.hjgc.202306015
  • Received Date: 2022-06-12
    Available Online: 2023-09-02
  • Aiming at the design and optimization problem of gap height of base slot in the internal components of the biofluidized bed, the effects of different aeration intensities and different gap heights on liquid phase velocity, turbulent kinetic energy and oxygen mass transfer characteristics of biofluidized beds were analyzed by applying laser particle image velocity (PIV) and dissolved oxygen online testing techniques. The result showed that the bottom liquid velocity and the overall liquid velocity of the fluidized bed were maximum when the gap height was 75 mm, and the overall liquid phase turbulent kinetic energy was relatively smaller. Morever, there were small disadvantages in oxygen mass transfer coefficient and mass transfer efficiency. From the perspective of structural optimization, the overall effect was the best when the baffle had a low clearance height of 75 mm, which was conducive to saving energy consumption and reducing cost. In addition, the optimal liquid phase flow field and oxygen mass transfer characteristics, and a more comprehensive and in-depth analysis of the synergy of other internal components of the biological fluidized bed were still required.
  • [1]
    DAIZO K, LEVENSPIEL O D. Fluidization Engineering[M]. 2nd ed. Oxford:Butterworth-Heinemann, 1991.
    [2]
    陈少奇,邵媛媛,马可颖,等.液固循环流化床的开发与应用:过程集成与强化[J].化工进展,2019,38(1):122-135.
    [3]
    MICHAEL J, NELSON, GEORGE HAKHLA, et al. Fluidized-bed bioreactor applications for biological wastewater treatment:a review of research and developments[J]. Engineering 2017, 3(3):330-342.
    [4]
    韩香云,单学凯,陈天明. 微囊化生物流化床降解对氯甲苯的性能优化[J].环境工程,2016,34(11):12-17

    , 63.
    [5]
    DRAKE J B, HEINDEL T J. Comparisons of annular hydrodynamic structures in 3D fluidized beds using X-ray computed tomography imaging[J]. Journal of Fluids Engineering, 2012, 134(8):081305.
    [6]
    陈梓晟,张涛,麦礼杰,等.正方形流化床结构参数改变和内构件强化的数值模拟解析[J].化工进展,2017,36(6):1997-2009.
    [7]
    朱家亮,张涛,韦朝海.基于结构参数响应的内循环流化床流体特性优化数值模拟[J].环境科学学报,2012,32(11):2732-2740.
    [8]
    LIU R, LIU Y, LIU C Z. Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor[J]. Chemical Engineering Research & Design, 2013, 91(2):211-220.
    [9]
    XU L, LIU R, WANG F, et al. Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics[J]. Bioresource Technology, 2012, 119(7):300-305.
    [10]
    FAN L, XU N, ZHANG Y K, et al. Structure optimization of an improved inner-circulating biological fluidized bed by numerical simulation[J]. Environmental Engineering Science, 2008, 25(6):839-848.
    [11]
    陈婷,余健,王烽,等.基于CFD的三相内循环生物流化床操作参数影响的分析[J].环境工程,2015,33(7):19-23

    , 40.
    [12]
    YAN C Y, LU C X, LAN X Y, et al. Hydrodynamics in airlift loop section of petroleum coke combustor[J]. Powder Technology, 2009, 192:143-151.
    [13]
    BOYER C, DUQUENNE A, WILD G. Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chemical Engineering Science, 2002, 57:3185-3215.
    [14]
    DI RENZO A, DI MIAO F P. Homogeneous and bubbling fluidization regimes in DEM-CFD simulations:hydrodynamic stability of gas and liquid fluidized beds[J]. Chemical Engineering Science, 2007, 62(1):116-130.
    [15]
    CHRISTOPHER E. BRENNEN. Fundamentals of multiphase flows[M]. Cambridge:Cambridge University Press, 2005.
    [16]
    MARKUS R, CHRISTIAN E. Particle Image Velocimetry:a Pratical Guide[M]. Berlin:Springer, 2007.
    [17]
    ALBERINI F, LIU L, STITT E H, et al. Comparison between 3-D-PTV and 2-D-PIV for determination of hydrodynamics of complex fluids in a stirred vessel[J]. Chemical Engineering Science, 2017, 171:189-203.
    [18]
    ZHOU Y J, LIN W Z, YUAN M Y, et al. Investigation on the flow field and mixing efficiency of a stirred tank equipped with improved intermig impellers[J]. International Journal of Chemical Reactor Engineering, 2019, 17(11):2019-0020.
    [19]
    张波涛,李永,李小明,等.应用PIV技术测量封闭式水泵吸水池内部流场[J].水泵技术,2001(6):7-10.
    [20]
    周小红,施汉昌,何苗.采用微电极测定溶解氧有效扩散系数的研究[J].环境科学,2007,28(3):598-602.
    [21]
    NAPHON P, WONGWISES S. A review of flow and heat transfer characteristics in curved tubes[J]. Renewable and Sustainable Energy Reviews, 2006, 10(5):463-490.
    [22]
    YU L M, ZENG A W, YU K T. Effect of interfacial velocity fluctuations on the enhancement of the mass-transfer process in falling-film flow[J]. Industrial & Engineering Chemistry Research, 2006, 45(3):1201-1210.
    [23]
    刘代俊,钟本和,张允湘.颗粒与液相间的湍流涡旋裂变传质模型[J].化工学报,2004,55(1):25-31.
    [24]
    王银亮,艾海南,黄维,等.排水管道内湍动能分布特性及影响因素[J].环境工程学报,2015,9(8):3637-3642.
    [25]
    董亮,曾涛,刘少北,等.四边形折流式膜生物流化床内填料浓度及液相流场特性研究[J].环境科学学报,2017,37(11):4139-4149.
    [26]
    PRASAD A K. Stereoscopic particle image velocimetry[R]. Experiments in Fluids, 2000, 29:103-116.
    [27]
    岳廷瑞,张逊,刘垒,等.PIV系统测量误差的评价方法研究[J].计算机测量与控制,2018,26(12):255-259.
    [28]
    JONG H Y, SANG-JOON L. Direct comparison of 2D PIV and stereoscopic PIV measurements[R]. Meas Sci Technol, 2002, 13:1631-1642.
    [29]
    董亮,曾涛,刘少北,等.不同进水流量对管式曝气池液相流态及氧传质特性的影响[J].环境污染与防治,2017,39(11):1246-1250.
    [30]
    LUO L J, YUAN J Q, XIE P, et al. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates[J]. Chemical Engineering Research and Design, 2013, 91(12):2377-2388.
    [31]
    LITTLEJOHNS J V, ANDREW J D. Oxygen mass transfer and hydrodynamics in a multi-phase airlift bioscrubber system[J]. Chemical Engineering Science, 2009, 64(19):4171-4177.
    [32]
    贾荣畅,刘颖,朱燕,等.微孔曝气器孔径与运行气量对微孔曝气氧传质的影响研究[J].环境污染与防治,2015,37(8):75-79.
  • Relative Articles

    [1]WANG Libiao, WANG Xuesong, WU Weifeng, ZHOU Huazhen, ZHENG Jiajun, ZHANG Miaojia. EFFICIENCY ASSESSMENT AND DISPATCH OPTIMIZATION OF WATER PUMP OPERATIONS AT THE HONGPAN WATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 140-145. doi: 10.13205/j.hjgc.202411015
    [2]WANG Lei, YU Kun, CHEN Hui, MAO Zhekai, ZHANG Lingqin, XU Yuntao. APPLICATION OF UNMANNED INSPECTION IN WATER SUPPLY PIPELINE NETWORK BASED ON THE FUSION OF FIBER OPTIC SENSING AND VIDEO AI TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 59-63. doi: 10.13205/j.hjgc.202311010
    [3]LIN Yudao, TAO Tao, XIN Kunlun, PU Zhengheng, CHEN Lei. GRAPH DEEP LEARNING: APPLICATION ON SHORT-TERM WATER DEMAND FORECASTING FOR WATER DISTRIBUTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 149-153. doi: 10.13205/j.hjgc.202304021
    [4]SONG Wenke, WANG Shanyue, TAO Tao. A LEAKAGE ZONE IDENTIFICATION METHOD FOR WATER DISTRIBUTION NETWORKS BASED ON VIRTUAL PRESSURE PARTITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 184-191. doi: 10.13205/j.hjgc.202307025
    [5]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [6]LI Cong, DU Rui, PENG Yongzhen. NITROGEN REMOVAL EFFICIENCY AND CARBON SOURCE UTILIZATION CHARACTERISTICS OF PARTIAL DENITRIFICATION COUPLING ANAMMOX PROCESSES WITH DIFFERENT SLUDGE AGGREGATION MODES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 1-9. doi: 10.13205/j.hjgc.202309001
    [7]CHEN Xinyu, HOU Bingqian, GENG Ru, ZHOU Xiangtong, WU Zhiren, WEI Jing. A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 251-259. doi: 10.13205/j.hjgc.202211033
    [8]LI Ruiting, ZHANG Wenrui, LI Aimin, SHUANG Chendong, ZHOU Qing, SHI Peng. REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030
    [9]HONG Yiqun, CHEN Liping, GONG Yanfeng, XUE Fangling, ZHOU Yanjie, WANG Shiling. EFFECT OF BIOFILM ON SUSPENDED PARTICLES TRANSPORT IN POROUS MEDIA BASED ON LBM-DEM COUPLING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 101-108. doi: DOI:10.13205/j.hjgc.202207015
    [10]WANG Jiaquan, LI Zhirong, HUANG Chuyu, LI Zhaomin, XIN Kunlun. LEAKAGE LOCATION METHODS OF WATER DISTRIBUTION NETWORK BASED ON TEMPORAL AND PRESSURE SPATIAL FEATURES WITH PHYSICAL EXPERIMENT VERIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 233-240. doi: 10.13205/j.hjgc.202206030
    [11]LI Junyu, LIU Shuming, WU Xue, XIE Tao, JIN Ye. OPTIMIZATION OF URBAN WATER SUPPLY NETWORK BASED ON DYNAMIC PRUNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 226-232,153. doi: 10.13205/j.hjgc.202206029
    [12]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [13]SUN Hao, YU Tong, YIN Hao-shuai, ZHAO Fei, SHI Xue-qing, BI Xue-jun. RESEARCH PROGRESS ON BIOFOULING OF REVERSE OSMOSIS AND ITS MONITORING AND CONTROL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 62-72. doi: 10.13205/j.hjgc.202107007
    [14]KANG Xiao-feng, WANG Li-sheng, LIU Chun, LIU Yan-chen, HUANG Xia. RESEARCH PROGRESS OF NITROGEN REMOVAL IN MEMBRANE AERATED BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 38-45. doi: 10.13205/j.hjgc.202107004
    [15]WAN Ming-yue, DU Ji-ming, LI Jun, LI Yi, WANG Long-fei. INFLUENCE OF FLOWING AND STATIC WATER CONDITIONS ON MICROBIAL COMMUNITIES OF BIOFILMS ATTACHED ON SURFACE OF HYDRAULIC CONCRETE STRUCTURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 35-40,69. doi: 10.13205/j.hjgc.202002004
    [16]Liu Qiang, Zhao Taixin, Zhao Changshuang, Yan Meng. MICRO-POLLUTED LAKE WATER TREATMENT BY A FLOTATION/POROUS BALL/MEMBRANE INTEGRATED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 11-14. doi: 10.13205/j.hjgc.201501003
    [17]Duan Huajie, Tang Zhijian, Zhang Yuefeng, Zheng Pu, Zhu Guangcan, Wang Guangyuan. SIMULATION ON NITRIFICATION PERFORMANCE IN PULSE TRICKLING FILTER BASED ON BIOFILM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 53-57. doi: 10.13205/j.hjgc.201504012
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 88.3 %META: 88.3 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.3 %其他: 22.3 %其他: 1.1 %其他: 1.1 %China: 0.4 %China: 0.4 %上海: 3.9 %上海: 3.9 %东莞: 0.7 %东莞: 0.7 %中山: 0.4 %中山: 0.4 %保定: 0.4 %保定: 0.4 %北京: 2.5 %北京: 2.5 %十堰: 0.4 %十堰: 0.4 %南京: 4.6 %南京: 4.6 %厦门: 0.7 %厦门: 0.7 %台北: 0.4 %台北: 0.4 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %喀什: 1.8 %喀什: 1.8 %大同: 0.7 %大同: 0.7 %天津: 2.8 %天津: 2.8 %宜春: 0.7 %宜春: 0.7 %常州: 0.4 %常州: 0.4 %常德: 0.7 %常德: 0.7 %广州: 1.1 %广州: 1.1 %弗吉: 0.4 %弗吉: 0.4 %张家口: 1.4 %张家口: 1.4 %张家界: 0.4 %张家界: 0.4 %成都: 0.4 %成都: 0.4 %扬州: 1.1 %扬州: 1.1 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 3.5 %杭州: 3.5 %桂林: 0.4 %桂林: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %河内: 0.4 %河内: 0.4 %济南: 0.4 %济南: 0.4 %温州: 0.7 %温州: 0.7 %湘潭: 0.7 %湘潭: 0.7 %漯河: 2.8 %漯河: 2.8 %澳门: 2.1 %澳门: 2.1 %福州: 1.8 %福州: 1.8 %秦皇岛: 0.7 %秦皇岛: 0.7 %绍兴: 1.1 %绍兴: 1.1 %芒廷维尤: 8.9 %芒廷维尤: 8.9 %芝加哥: 3.5 %芝加哥: 3.5 %葫芦岛: 0.4 %葫芦岛: 0.4 %西宁: 7.1 %西宁: 7.1 %西安: 1.1 %西安: 1.1 %西雅图: 0.4 %西雅图: 0.4 %贵阳: 3.9 %贵阳: 3.9 %运城: 1.1 %运城: 1.1 %连云港: 0.4 %连云港: 0.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.7 %邯郸: 0.7 %郑州: 1.1 %郑州: 1.1 %重庆: 1.8 %重庆: 1.8 %长春: 0.4 %长春: 0.4 %长沙: 0.7 %长沙: 0.7 %马鞍山: 1.1 %马鞍山: 1.1 %其他其他China上海东莞中山保定北京十堰南京厦门台北合肥呼和浩特哈尔滨喀什大同天津宜春常州常德广州弗吉张家口张家界成都扬州昆明晋城朝阳杭州桂林武汉沈阳河内济南温州湘潭漯河澳门福州秦皇岛绍兴芒廷维尤芝加哥葫芦岛西宁西安西雅图贵阳运城连云港遵义邯郸郑州重庆长春长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return