Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WEI Jianjun, GE Yijie. PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 132-142,173. doi: 10.13205/j.hjgc.202306018
Citation: WEI Jianjun, GE Yijie. PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 132-142,173. doi: 10.13205/j.hjgc.202306018

PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE

doi: 10.13205/j.hjgc.202306018
  • Received Date: 2021-12-07
    Available Online: 2023-09-02
  • Bimetallic nickel-iron nanoparticles were supported on mesoporous alumina in order to improve their dispersion performance, suspension ability and mobility in groundwater, as well as aqueous dechlorination reactivity and reactive longevity toward chlorinated organic contaminants in groundwater. Mesoporous alumina with a pore diameter of 7.65 nm, a pore volume of 0.68 cm3/g, and a specific surface area of 350 m2/g was prepared. Then bimetallic Ni-Fe (FeNi3) nanoparticles were produced on mesoporous alumina by calcining in hydrogen gas (10% by volume) at 400℃. A nickel-iron layered double hydroxides was impregnated onto the carrier. Bare Ni-Fe nanoparticles were 50~100 nm in diameter and agglomerated together. In comparison, the crystallite size of the supported Ni-Fe nanoparticles decreased to 11.5 nm due to the interfacial interaction between the nanoparticles and the mesoporous alumina, and the confinement effect of the mesoporous structure. In addition, the dispersion performance of the supported Ni-Fe nanoparticles was dramatically enhanced. The composite of Ni-Fe nanoparticles and mesoporous alumina, i.e., Ni-Fe-nanoparticles/mesoporous-alumina, remained suspending in water within 12 h, whereas bare Ni-Fe nanoparticles precipitated in merely 2 min. When trichloroethylene was loaded at an initial concentration of 23.7 mg/L, i.e., 1000 times the average concentration in groundwater, the overall yield of two-carbon hydrocarbons was 12.03% in 48 h by the supported Ni-Fe nanoparticles, which was approximately 9 times greater than the bare counterpart. Furthermore, Ni-Fe-nanoparticles/mesoporous-alumina showed excellent adsorption activity, and only 0.41% of trichloroethylene remained in 48 h. The composite showed a remarkable reactive longevity in multi-run use, with the yield of two-carbon hydrocarbons during the 4th run being the same as the 1st run (0.23 μmol). Furthermore, it still exhibited adsorption and dechlorination activity until the 8th run, during which the degradation of trichloroethylene and yield of two-carbon hydrocarbons were 1.05 μmol and 0.043 μmol, respectively. The results indicate that the composite is a promising material for remediation of groundwater contaminated by chlorinated organic compounds.
  • [1]
    PETRISOR G I, WELLS T J. Tracking chlorinated solvents in the environment. Issues in Environmental Science and Technology, No.26, Environmental Forensics[M]. London:Royal Society of Chemistry, 2008. 130-152.
    [2]
    EPA 816-F-09-004 National primary drinking water regulations[S].
    [3]
    中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准:GB 5749-2006[S]. 2006.
    [4]
    国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838-2002[S]. 2002.
    [5]
    国家技术监督局. 地下水质量标准:GB/T 14848-9[S].1993.
    [6]
    宋汉周,WOODBURY D A. TCE的物理化学特性及其生物降解作用——某碳酸盐岩含水层中地下水有机物污染及其去除研究之一[J]. 河海大学学报, 2000, 28(1):52-56.
    [7]
    SWEENY H K, WEST COVINA; FISCHER R J, CLAREMONT, both of CALIF. Reductive degradation of halogenated pesticides[P]. United States:3640821, Feb. 8, 1972.
    [8]
    大连理工大学无机化学教研室. 无机化学[M]. 5版. 北京:高等教育出版社, 2006.
    [9]
    VOGEL M T, CRIDDLE S C, MCCARTY L P. Transformation of halogenated aliphatic compounds[J]. Environmental Science & Technology, 1987, 21(8):722-736.
    [10]
    SU C M, PULS W R. Kinetics of trichloroethene reduction by zerovalent iron and tin:pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science & Technology, 1999, 33(1):163-168.
    [11]
    ARNOLD A W, BOBERTS L A. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environmental Science & Technology, 2000, 34(9):1794-1805.
    [12]
    LIU Y Q, MAJETICH A S, TILTON D R, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties[J]. Environmental Science & Technology, 2005, 39(5):1338-1345.
    [13]
    LIU Y Q, CHOI H, DIONYSIOU D, et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron[J]. Chemistry of Materials, 2005, 17(21):5315-5322.
    [14]
    CHUN L C, BAER R D, MATSON W D, et al. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni[J]. Environmental Science & Technology, 2010, 44(13):5079-5085.
    [15]
    SCHRICK B, BLOUGH L J, JONES D A, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials, 2002, 14(12):5140-5147.
    [16]
    ANANG E, LIU H, FAN X Y, et al. Compositional evolution of nanoscale zero valent iron and 2,4-dichlorophenol during dechlorination by attapulgite supported Fe/Ni nanoparticles[J]. Journal of Hazardous Materials, 2021,412:125246.
    [17]
    XIE J T, LEI C, CHEN W Q, et al. Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr(Ⅵ):efficacy, descriptor and reductive mechanisms[J]. Journal of Hazardous Materials, 2021, 403:123827.
    [18]
    CHOI H, AGARWAL S, Al-ABED S R. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd:mechanistic aspects and reactive capping barrier concept[J]. Environmental Science & Technology, 2009, 43(2):488-493.
    [19]
    LIU Z T, DING C C, GAO P T, et al. Enhanced dechlorination of 2,6-dichlorophenol by carbon nanotubes supported Fe/Ni nanoparticles:characterization, influencing factors, and kinetics[J]. Colloids and Surfaces A, 2020, 585:124089.
    [20]
    ZHENG T H, ZHAN J J, HE J B, et al. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation[J]. Environmental Science & Technology, 2008, 42(12):4494-4499.
    [21]
    QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. J. Hazard. Mater., 2011, 193:70-81.
    [22]
    CAI W Q, YU J G, ANAND C, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties[J]. Chemistry of Materials, 2011, 23(5):1147-1157.
    [23]
    XU X, MEGARAJAN K S, XIA X F, et al. Effect of reduction temperature on the structure and catalytic performance of mesoporous Ni-Fe-Al2O3 in oxidative dehydrogenation of ethane[J]. New Journal of Chemistry, 2020, 44(44):18994-19001.
    [24]
    MARINHO A L ANDRÉ, TONIOLO S F, NORONHA B F, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane[J]. Applied Catalysis B:Environmental, 2021, 281:119459.
    [25]
    BADOGA S, KAMATH G, DALAI A. Effects of promoters (Mn, Mg, Co and Ni) on the Fischer-Tropsch activity and selectivity of KCuFe/mesoporous-alumina catalyst[J]. Applied Catalysis A, General, 2020, 607:117861.
    [26]
    ZHANG Z L, ZHU Y H, ASAKURA H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation[J]. Nature Communications, 2017,8:16100.
    [27]
    MEBRAHTU C, KREBS F, PERATHONER S, et al. Hydrotalcite based Ni-Fe/(Mg, Al)O<i>x catalysts for CO2 methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size. Catalysis Science & Technology, 2018, 8(4):1016-1027.
    [28]
    GAO W, ZHAO Y F, LIU J M, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catalysis Science & Technology, 2013, 3(5):1324-1332.
    [29]
    WU Q L, ZHANG F, YANG J P, et al. Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure[J]. Microporous and Mesoporous Materials, 2011, 143:406-412.
    [30]
    THOMMES M, KANEKO K, NEIMARK V A, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure & Applied Chemistry, 2015, 87(9/10):1051-1069.
    [31]
    SING K S W, EVERETT H D, HAUL W A R, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 1985, 57(4):603-619.
    [32]
    傅献彩, 沈文霞, 姚天扬,等. 物理化学下册[M]. 5版. 北京:高等教育出版社, 2006.
    [33]
    安哲, 何静, 段雪. 层状材料及催化[J]. 中国科学(化学), 2012, 42(4):390-405.
    [34]
    CAILLERIE JBDDL, KERMAREC M, CLAUSE O. Impregnation of γ-alumina with Ni(Ⅱ) or Co(Ⅱ) ions at neutral pH:hydrotalcite-type coprecipitate formation and characterization[J]. Journal of the Ameircan Chemical Society, 1995, 117(46):11471-11481.
    [35]
    ZHANG N L, LUO J, BLOWERS P, et al. Understanding trichloroethylene chemisorption to iron surfaces using density functional theory[J]. Environmental Science & Technology, 2008, 42(6):2015-2020.
    [36]
    ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles:reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21):7523-7529.
  • Relative Articles

    [1]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [2]LIAO Xun, LI Yancheng, ZHANG Yuduo, YANG Qilin, LI Jiang. RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 113-120. doi: 10.13205/j.hjgc.202402013
    [3]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [4]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [5]SU Hao, FENG Li, ZHANG Liqiu. INFLUENCE OF RESIDUAL NANOPARTICLES IN MUNICIPAL SEWAGE ON FORMATION OF CHLORINATION DISINFECTION BY-PRODUCTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 33-40. doi: 10.13205/j.hjgc.202308005
    [6]PAN Xuemei, QIU Fangfang, WANG Qinyuan, CHEN Jincheng, ZHANG Ping. TOXICITY EFFECT OF ORGANIC MODIFIED LAYERED DOUBLE HYDROXIDE COMBINED WITH METHYL ORANGE ON CHLORELLA VULGARIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 26-34. doi: 10.13205/j.hjgc.202301004
    [7]LI Jingjie, CAI Wutian, LU Yonggao, BIAN Chao, YANG Li, WANG Mingguo. EFFECT EVALUATION OF Cr(Ⅵ) CONTAMINATED GROUNDWATER REMEDIATION BY PERMEABLE REACTIVE WALL IN PILOT SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 162-167,176. doi: 10.13205/j.hjgc.202202025
    [8]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [9]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [10]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [11]GU Linkai, WANG Mingyu, SUN Dongyue, WANG Yajing. TCE (TRICHLOROETHENE) REMEDIATION IN SATURATED POROUS MEDIA WITH MICRON ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 14-21. doi: 10.13205/j.hjgc.202208002
    [12]XU Hao, SUN Xiao-ling. THE INTERACTIVE MODELING AND JOINT PREVENTION OF WATER POLLUTION BETWEEN SURFACE WATER AND GROUNDWATER IN MAOZHOU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 21-26. doi: 10.13205/j.hjgc.202106004
    [13]YE Zhao-yong, YANG Yu, HOU Li-an. HOTSPOTS AND TRENDS OF GROUNDWATER RELATED RESEARCHES NEAR LANDFILLS:VISUAL ANALYSIS BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 65-71. doi: 10.13205/j.hjgc.202106011
    [14]XIANG Jia-jia. GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 63-68,91. doi: 10.13205/j.hjgc.202109010
    [15]XIAO Yong, MO Pei, YIN Shi-yang, LIU Hong-lu, ZHANG Yun-hui. HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013
    [16]SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
    [17]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [18]CHEN Si-li, YI Zhong-yuan, WANG Ji, PAN Chao-yi, CHANG Sha, GUO Qing-wei, ZHOU Jun-guang, SUN Lan. CASE STUDY ON REMEDIATION OF DIESEL CONTAMINATED SOIL AND GROUNDWATER BY ELUENT-EXTRACTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 178-182. doi: 10.13205/j.hjgc.202001029
    [20]Li Jingjie Cai Wutian Geng Tingting Liu Jiangtao Liu Jinwei Zhang Tao Cao Yueting, . THE EFFECTS OF FIELD MEASURING CONDITIONS ON PETROLEUM CONTAMINATION GROUNDWATER CONVENTIONAL WATER CHEMISTRY PARAMETERS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 70-74. doi: 10.13205/j.hjgc.201504015
  • Cited by

    Periodical cited type(2)

    1. 蒲浩,王雁,郭泽宇,胡干琳,赵旭. 介孔Pt-Fe/Al_2O_3强化类芬顿催化降解罗丹明B性能与机理. 环境科学学报. 2024(07): 83-94 .
    2. 杨兴哲,林大峰,李俊伟,景方飞,左梓涵,唐立娜,杨宗政. 零价铁联合微生物修复氯代脂肪烃污染地下水的研究进展. 工业水处理. 2024(11): 42-51 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 82.6 %META: 82.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.1 %其他: 26.1 %其他: 0.9 %其他: 0.9 %上海: 4.3 %上海: 4.3 %保定: 0.9 %保定: 0.9 %北京: 3.5 %北京: 3.5 %南京: 1.7 %南京: 1.7 %合肥: 0.9 %合肥: 0.9 %大同: 1.7 %大同: 1.7 %常德: 1.7 %常德: 1.7 %张家口: 0.9 %张家口: 0.9 %成都: 0.9 %成都: 0.9 %扬州: 0.9 %扬州: 0.9 %昆明: 0.9 %昆明: 0.9 %晋城: 0.9 %晋城: 0.9 %湖州: 1.7 %湖州: 1.7 %漯河: 1.7 %漯河: 1.7 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 35.7 %芒廷维尤: 35.7 %衢州: 3.5 %衢州: 3.5 %西宁: 3.5 %西宁: 3.5 %贵阳: 1.7 %贵阳: 1.7 %运城: 2.6 %运城: 2.6 %遵义: 0.9 %遵义: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %其他其他上海保定北京南京合肥大同常德张家口成都扬州昆明晋城湖州漯河石家庄芒廷维尤衢州西宁贵阳运城遵义郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(3) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return