Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LIAO Ziying, ZHANG Huanjun, HAN Shuguang, PAN Zhengguo, LI Yi. LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 143-150. doi: 10.13205/j.hjgc.202306019
Citation: LIAO Ziying, ZHANG Huanjun, HAN Shuguang, PAN Zhengguo, LI Yi. LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 143-150. doi: 10.13205/j.hjgc.202306019

LIFE CYCLE ASSESSMENT OF TYPICAL CYANOBACTERIA TREATMENT EQUIPMENT

doi: 10.13205/j.hjgc.202306019
  • Received Date: 2022-09-22
    Available Online: 2023-09-02
  • The common treatment equipment includes cyanobacteria magnetic capture vessels, pressurized cyanobacterial control vessels, submersible pressure cyanobacteria controllers and combined cyanobacteria water separation devices. The application of equipment may cause impacts on the environment. It is necessary to identify the impacts of typical treatment equipment. Based on the life cycle assessment (LCA) method, this study selected typical cyanobacterial treatment equipment as the evaluation object, analyzed its environmental impacts in the production and operation stages, and screened out the main stages and the main influencing factors leading to environmental load. The results showed that the total environmental loads of the four devices were in an order of submersible pressure cyanobacteria controller
  • loading
  • [1]
    HUISMAN J, CODD G A, PAERL H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8):471-483.
    [2]
    HO J C, MICHALAK A M, PAHLEVAN N. Widespread global increase in intense lake phytoplankton blooms since the 1980s[J]. Nature, 2019, 574(7780):667-670.
    [3]
    SUN D Y, LIN X H, et al. Process evaluation of urban river replenished with reclaimed water from a wastewater treatment plant based on the risk of algal bloom and comprehensive acute toxicity[J]. Water Reuse, 2021, 12(1):1-10.
    [4]
    邓莎, 周键. 蓝藻水华的危害及主要控制技术研究进展[J]. 安徽农学通报, 2020, 26(18):150-151.
    [5]
    常露, 朱云, 朱喜. 治理巢湖蓝藻爆发现状及思路[J]. 环境生态学, 2020, 2(8):89-95.
    [6]
    方雨博, 王趁义, 汤唯唯, 等. 除藻技术的优缺点比较、应用现状与新技术进展[J]. 工业水处理, 2020, 40(9):1-6.
    [7]
    殷鹏, 张建华, 胡晓雨. 太湖蓝藻水华和湖泛应急防控能力提升对策研究[J]. 水资源开发与管理, 2022, 8(1):18-22.
    [8]
    朱晔宸. 微能耗加压沉淀蓝藻治理技术装备研发与应用[D]. 扬州:扬州大学, 2022.
    [9]
    周越, 丛海兵, 鄢琪, 等. 深井循环加压对养殖塘蓝藻控制及机制研究[J]. 环境污染与防治, 2017, 39(5):520-524.
    [10]
    石宏博, 黄玥, 杨逢乐, 等. 基于层次分析法的洱海控藻工程环境效益识别:以挖色湖湾藻水分离站为例[J]. 环境科学与技术, 2020, 43(增刊2):194-200.
    [11]
    潘阳, 陈旭清, 张铮惠, 等. 压力作用后的蓝藻在太湖中的生长控制机理[J]. 环境科学与技术, 2020, 43(7):8-13.
    [12]
    丛海兵, 高郑娟, 孙秀秀. 压力作用后太湖蓝藻沉淀性能及其去除研究[J]. 中国给水排水, 2014, 30(1):43-47.
    [13]
    曹泽磊,易斯文,马立恒,等. 一种蓝藻打捞分离方法[P]. 江苏省:CN111747612A,2020-10-09.
    [14]
    邹楚钧, 薛现光, 朱德平, 等. 改性红土应急除藻及水质改善评价:水库现场应用[J]. 环境科学与技术, 2020, 43(3):206-213.
    [15]
    王晓刚, 付健, 戴江玉, 等. 河湖健康评价案例分析[J]. 中国水利, 2020(20):11-13.
    [16]
    陈轶群. 紫外/过硫酸盐除藻及对消毒副产物生成影响研究[D]. 武汉:华中科技大学, 2017.
    [17]
    梅梦磊. 基于LCA的船舶环境影响与能效评价系统研究[D]. 武汉:武汉理工大学, 2018.
    [18]
    HULLEBUCH V E, VERONIQUE D, PHILIPPE C M, et al. Environmental impact of two successive chemical treatments in a small shallow eutrophicated lake:Part Ⅰ. case of aluminum sulphate[J]. Environmental Pollution, 2002, 120(3):617-626.
    [19]
    HOU X, ZHANG W L, LUO X Y, et al. Life cycle assessment of typical urban wastewater reclamation alternatives with different recycling usage[J]. Environment Engineering, 2017, 35(2):153-157, 189.
    [20]
    罗小勇, 黄希望, 王大伟, 等. 生命周期评价理论及其在污水处理领域的应用综述[J]. 环境工程, 2013, 31(4):118-122.
    [21]
    ZHANG W L, FANG S Q, LI Y, et al. Optimizing the integration of pollution control and water transfer for contaminated river remediation considering life-cycle concept[J]. Journal of Cleaner Production, 2019, 236:117651.
    [22]
    GHIMIRE S R, JOHNSTON J M, INGWERSEN W W, et al. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system[J]. Journal of Cleaner Production, 2017, 151(2):75-86.
    [23]
    张杉雪, 张文龙, 熊维, 等. 典型海水淡化工艺的生命周期评价[J]. 环境工程, 2019, 37(3):168-173.
    [24]
    李爽, 王向阳, 郝晓地, 等. 全生命周期评价在污水处理中的研究与应用[J]. 中国给水排水, 2020, 36(18):32-37.
    [25]
    郑秀君, 胡彬. 我国生命周期评价(LCA)文献综述及国外最新研究进展[J]. 科技进步与对策, 2013, 30(6):155-160.
    [26]
    SCHMID A G, TARPAMI R R Z. Life cycle assessment of wastewater treatment in developing countries:a review[J]. Water Research, 2019, 153:63-79.
    [27]
    黄希望, 罗小勇, 李轶, 等. 污水处理厂生命周期评价及不同工艺污水处理系统的环境影响比较分析[J].水资源保护, 2014, 30(1):90-94.
    [28]
    冯慧云, 张长风, 蒋锦刚, 等. 蓝藻磁絮体拨轮及蓝藻磁捕船[P]. 安徽省:CN112431181A,2021-03-02.
    [29]
    叶瑞, 张发宇, 杜海明, 等. 富营养化水体中藻类物质磁捕移出装置[P]. 安徽:CN201553641U,2010-08-18.
    [30]
    刘兵, 叶瑞, 杜海明, 等. 一种新型磁分离污水处理装置[P]. 安徽:CN101913685A,2010-12-15.
    [31]
    曹泽磊, 陈旭清, 胡航宇, 等. 一种蓝藻打捞及加压控藻船[P]. 江苏省:CN106638518B,2018-11-13.
    [32]
    潘阳. 大型水体原位加压沉淀控制蓝藻生长机理研究[D]. 扬州:扬州大学, 2022.
    [33]
    潘正国, 树大伟, 曹泽磊,等. 一种深潜式高压灭藻装备[Z]. 2020.
    [34]
    李碧英,陈实. 船舶碳足迹计算[J]. 中国船检, 2010(10):48-51.
    [35]
    TUAN D D, WEI C. Cradle-to-gate life cycle assessment of ships:a case study of Panamax bulk carrier[J]. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Envirinment, 2019, 233(2):670-683.
    [36]
    ÖNAL M, NESER G, GURSEL K T. Environmental impacts of steel ship hulls building and recycling by life cycle assessment (LCA)[J]. Ships and Offshore Structures, 2020, 16(9/10):1061-1066.
    [37]
    FAVI C, CAMPI F, GERMANI M, et al. Using design information to create a data framework and tool for life cycle analysis of complex maritime vessels[J]. Journal of Cleaner Production, 2018, 192(10):887-905.
    [38]
    刘夏璐, 王洪涛, 陈建,等. 中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报, 2010, 30(10):2136-2144.
    [39]
    SHAHABI M P, MCHUGH A, ANDA M, et al. Comparative economic and environmental assessments of centralised and decentralised seawater desalination options[J]. Desalination, 2015, 376(16):25-34.
    [40]
    BLANCO D, COLLADO S, LACA A, et al. Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain[J]. Water Science & Technology, 2016, 73(4):835-842.
    [41]
    李碧英.基于生命周期评价的船舶环境影响行为研究[J].环境保护与循环经济, 2009, 29(7):17-20.
    [42]
    王腊芳, 张莉沙. 钢铁生产过程环境影响的全生命周期评价[J]. 中国人口·资源与环境, 2012, 22(增刊2):239-244.
    [43]
    任浩强. 基于全生命周期的船舶环境成本控制评价研究[D]. 镇江:江苏科技大学, 2016.
    [44]
    鄢琪, 丛海兵, 周越, 等. 深水井循环处理对养殖水体蓝藻控制及对水质的改善[J]. 环境工程学报, 2017, 11(6):3539-3544.
    [45]
    丛海兵, 孙凤, 蒋新跃, 等. 深井循环控制浅水蓝藻生长繁殖系统和方法[P]. CN106365218B,2019-04-19.
    [46]
    MUNO I, FERNANDEZ A, AMADEO R. Reducing the environmental impacts of reverse osmosis desalination by using brackish groundwater resources[J]. Water Research, 2008, 42(3):801-811.
    [47]
    潘阳, 陈旭清, 张铮惠, 等. 压力作用后的蓝藻在太湖中的生长控制机理[J]. 环境科学与技术, 2020, 43(7):8-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return