Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Yajie, CUI Yanzhi, LIU Haidong, BIAN Huafeng, LI Junchao, ZHOU Yan. ANALYSIS OF SPATIAL DIFFERENCES AND COUNTERMEASURES OF PRECISION OF THE RURAL DOMESTIC SEWAGE TREATMENT IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 47-53,156. doi: 10.13205/j.hjgc.202306007
Citation: ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021

PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM

doi: 10.13205/j.hjgc.202306021
  • Received Date: 2022-09-13
    Available Online: 2023-09-02
  • Accurate prediction of ozone and PM2.5 concentration can provide a scientific basis for the prevention and control of photochemical pollution. However, the prediction accuracy of the existing ozone and PM2.5 concentration prediction models is still not sufficient. Based on the daily average ozone and PM2.5 concentration data in Nanjing from January 1, 2015, to June 30, 2021, a pollutant concentration prediction model for complementary ensemble empirical mode decomposition (CEEMD) secondary decomposition and long and short-term memory neural network (LSTM) was constructed. Firstly, the ozone and PM2.5 concentration sequence was decomposed by variational mode decomposition (VMD). Secondly, the CEEMD secondary decomposition was used with residual components, and then all the decomposed subsequences were predicted by LSTM. Finally, the output result was reconstructed to get the final result. The results showed that for the forcast of PM2.5 and O3 concentration in Nanjing, comparing with the other models, the model VMD-CEEMD-LSTM proposed in this paper was superior and robust, with the RMSE of ozone and PM2.5 concentrations of 16.47 and 5.12, respectively. This study could provide valuable references for analyzing ozone and PM2.5 pollution trend.
  • [1]
    BERO B G, RAZA A, FORSBERG B, et al. Short-term exposure to ozone and mortality in subjects with and without previous cardiovascular disease[J]. Epidemiology. 2016, 27(5):663-669.
    [2]
    LU X, ZHANG L, WANG X, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters. 2020, 7(4):240-247.
    [3]
    WU W L, XUE W B, ZHENG Y X, et al. Diurnal regulation of VOCs may not be effective in controlling ozone pollution in China[J].Atmospheric Environment, 2021, 256:118442.
    [4]
    LOAIZA-CEBALLOS M C, MARIN-PALMA D, ZAPATA W, et al. Viral respiratory infections and air pollutants[J]. Air Quality, Atmosphere & Health, 2021,187:109650.
    [5]
    赵晓东,徐浩然,郭志萍,等.基于区间二型模糊神经网络的臭氧浓度预测[J].计算机应用与软件,2022,39(6):329-335.
    [6]
    PENDLEBURY D, GRAVEL S, MORAN M D, et al. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions[J]. Atmospheric Environment, 2018, 174:148-170.
    [7]
    PARK S Y, LEE S H, LEE H W. Assimilation of wind profiler observations and its impact on three-dimensional transport of ozone over the Southeast Korean Peninsula[J]. Atmospheric Environment, 2014, 99:660-672.
    [8]
    PENDLEBURY D, GRAVEL S, MORAN M D, et al. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions[J]. Atmospheric Environment, 2018, 174:148-170.
    [9]
    LUNA A S, PAREDES M L L, DE OLIVEIRA G C G, et al. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil[J]. Atmospheric Environment, 2014, 98:98-104.
    [10]
    刘宇轩,应方,叶旭红,等. 基于后向传播神经网络的PM2.5和臭氧预测研究[J]. 能源工程,2020(5):76-83.
    [11]
    CHEN S, WANG J, ZHANG H. A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting[J]. Technological Forecasting and Social Change, 2019, 146:41-54.
    [12]
    董红召,王乐恒,唐伟,等.融合时空特征的PCA-PSO-SVM臭氧(O3)预测方法研究[J].中国环境科学,2021,41(2):596-605.
    [13]
    邢红涛,郭江龙,刘书安,等.基于CNN-LSTM混合神经网络模型的NO<i>x排放预测[J]. 电子测量技术,2022,45(2):98-103.
    [14]
    WANG L L, LI X, BAI Y L. Short-term wind speed prediction using an extreme learning machine model with error correction[J]. Energy Conversion and Management, 2018, 162:239-250.
    [15]
    吴子伯,崔云霞,曹炜琦,等.基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测[J].环境工程,2022,40(9):9-18.
    [16]
    丁子昂,乐曹伟,吴玲玲,等.基于CEEMD-Pearson和深度LSTM混合模型的PM2.5浓度预测方法[J].计算机科学,2020,47(增刊1):444-449.
    [17]
    CABANEROS S M, CALAUTIT J K, HUGHES B. Spatial estimation of outdoor NO2 levels in Central London using deep neural networks and a wavelet decomposition technique[J]. Ecological Modelling, 2020, 424:109017.
    [18]
    AHANI I K, SALARI M, SHADMAN A. An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas[J]. Journal of Cleaner Production, 2020, 263:120983.
    [19]
    ZHU S L, QIU X L, YIN Y R, et al. Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting[J]. Atmospheric Pollution Research, 2019, 10(4):1326-1335.
    [20]
    HU H L, WANG L, TAO R. Wind speed forecasting based on variational mode decomposition and improved echo state network[J]. Renewable Energy, 2021, 164:729-751.
    [21]
    SHARMA V, PAREY A. Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed[J]. Engineering Failure Analysis, 2020, 107:104204.
    [22]
    WANG F, YU L, WU A P. Forecasting the electronic waste quantity with a decomposition-ensemble approach[J]. Waste Management, 2021, 120:828-838.
    [23]
    何哲祥,李雷.一种基于小波变换和LSTM的大气污染物浓度预测模型[J].环境工程,2021,39(3):111-119.
    [24]
    梁涛,谢高锋,米大斌,等.基于CEEMDAN-SE和LSTM神经网络的PM10浓度预测[J].环境工程,2020,38(2):107-113.
  • Relative Articles

    [1]ZHANG Tongliang, ZHENG Tianlong, LI Wenkai, CHENG Wenhu, ZHU Chang, MEN Yingxin, CAO Yingnan, LIU Jianguo, YUAN Hongchao. PRESENT SITUATION AND SUGGESTION OF RURAL SEWAGE TREATMENT IN INNER MONGOLIA AUTONOMOUS REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 50-55. doi: 10.13205/j.hjgc.202410007
    [2]FENG Yuan, ZHAO Lüxuan, LIU Bingyan, WU Kaiqing, HE Yanfang, LI Li, HUANG Junkai, WENG Rui, LIANG Mingqi. CURRENT SITUATION AND SUGGESTIONS FOR AIR POLLUTION EMISSION CONTROL OF STEEL INDUSTRY IN GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 63-70. doi: 10.13205/j.hjgc.202406008
    [3]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [4]GU Xuedian, LIU Dongmei, LI Yuting, ZHANG Shangjun, CHEN Yidi, FENG Yujie, REN Nanqi. RESEARCH ON GREEN AND LOW CARBON TREATMENT PATH OF URBAN WATER POLLUTION IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 27-33. doi: 10.13205/j.hjgc.202412004
    [5]GUO Songjun, WANG Junhui, CHEN Laiguo, LIANG Xiaoming, LU Qing, ZHU Lihua, LIU Ming. COUNTERMEASURES AND SUGGESTIONS FOR IN-DEPTH TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN PRINTING INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 202-209,228. doi: 10.13205/j.hjgc.202303027
    [6]LÜ Zhiwen, LI Yuqing, YANG Jingjing, CAO Xiaoqiang, ZHANG Jian, LIU Huaqing, WANG Gang. PREPARATION OF SOLID WASTE-BASED POROUS MATERIALS BY PHYSICAL FOAMING TO CAPTURE AND STORE CO2[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 38-46. doi: 10.13205/j.hjgc.202306006
    [7]JIANG Yanbo, LING Wei, WEI Chunzhong, WEI Yuan, WU Chunfeng, WANG Chao, MENG Fangang. ENHANCEMENT OF COMPOSITE SOLID CARBON SOURCES ON NITROGEN REMOVAL PERFORMANCE OF A RURAL DOMESTIC SEWAGE TREATMENT PROCESS AND FUNCTIONAL BACTERIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 62-70. doi: 10.13205/j.hjgc.202210009
    [8]ZHANG Ke, TIAN Shuangchao, DOU Xueyan, ZHANG Chang, DONG Lixin, ZHU Jinliang, XIAO Benyi, LIU Qixin, LIU Jianwei, LIU Junxin. ANAEROBIC/AEROBIC BIOLOGICAL CONTACT OXIDATION PROCESS COUPLED WITH MICROBIAL FUEL CELL TO TREAT RURAL DOMESTIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 139-146. doi: 10.13205/j.hjgc.202203021
    [9]ZHANG Zhi-jie, WEN Fei, ZHANG Ya-qun, ZHOU Jing, FENG Ai-ping. CHARACTERISTICS AND SOURCE ANALYSIS OF NON-POINT SOURCE POLLUTION LOAD IN THE YELLOW RIVER BASIN ON A REGIONAL SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 81-88,142. doi: 10.13205/j.hjgc.202209011
    [10]HAO Shuran, CHEN Zhuo, XU Ao, WU Yinhu, LI Guoqiang, NI Xinye, HU Hongying. ANALYSIS OF WATER REUSE SITUATIONS AND POTENTIALS IN MAIN CITIES IN THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 1-8,79. doi: 10.13205/j.hjgc.202210001
    [11]SONG Da-gang, LI Hui-bin, WANG Jiu-chen, MEI Zi-li, RAN Yi. BIBLIOMETRIC ANALYSIS OF RESEARCH TRENDS ON RURAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 16-24,30. doi: 10.13205/j.hjgc.202105003
    [12]CHEN An-yao, LUO An-cheng, LIANG Zhi-wei, LIN Qiang, JIA Rui-jie, PING Shao-wei, DU Ping. AN EXPLORATORY RESEARCH ON ONLINE MONITORING METHOD FOR RURAL DOMESTIC SEWAGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 227-233. doi: 10.13205/j.hjgc.202108031
    [13]LUO Qi-jin, HE Chen-hui, CHEN Jian-yu, LI Jin-shi, YI Xin-gui. TREATMENT OF RURAL DOMESTIC SEWAGE BY AUTONOMOUS BREATHING ECOLOGICAL FILTER TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 58-63. doi: 10.13205/j.hjgc.202101008
    [14]ZHANG Ji-ku, SUN Mian. TREATMENT OF RURAL DOMESTIC SEWAGE BY AN AIR LIFTING A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 18-23. doi: 10.13205/j.hjgc.202101002
    [15]LIU Xing, LIU Wen-li, JIANG Xia, GUO Ji-feng, HUANG Wei, LIU Rui, ZHANG Cong. ANALYSIS OF TEMPORAL AND SPATIAL DISTRIBUTION OF RURAL DOMESTIC SEWAGE AND STATUS OF TREATMENT FACILITIES IN PLAIN RIVER NETWORK AREA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 38-44. doi: 10.13205/j.hjgc.202012007
    [17]Gao Yangjun, Geng Chunnv, Cao Yong. THREE ASSESSMENT METHODS ON HEAVY METALS CONTAMINATION IN RIVER SEDIMENTS OF SHANGHAI SUBURBAN AREA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 121-125. doi: 10.13205/j.hjgc.201510027
    [18]Sun Zijie Tian Kan Liu Tao Tian Honghai, . CURRENT SITUATION AND COUNTERMEASURES ON THE DEVELOPMENT ON HEAVY METAL REFERENCE MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 136-140. doi: 10.13205/j.hjgc.201503027
  • Cited by

    Periodical cited type(6)

    1. 崔艳智,黄亚捷,李君超,刘海东,贾小梅,周岩. 新时期京津冀农村生活污水协同治理实施路径. 中国环境管理. 2025(01): 30-39 .
    2. 张博,王凌生,和娴娴,张兆祥,栗勇田. 华北地区某沿海县域农村生活污水治理情况及建议. 能源与环境. 2025(01): 97-99+138 .
    3. 陈欣,冯震江,徐俏,夏瑞,马翠梅,夏星辉. 近十年来黄河中下游河水硝酸盐含量和来源变化及影响因素分析. 环境科学学报. 2025(03): 241-250 .
    4. 李海生. 黄河流域生态环境问题系统识别与展望. 环境科学研究. 2024(01): 1-10 .
    5. 李中华,井柳新,洪源,王帅,续衍雪. 基于水质提升的黄河流域城市尺度问题分析及对策研究. 环境科学研究. 2024(01): 51-62 .
    6. 郭钟锐,王东,孙滢斐,付根深. 郑州市新密市的农村污水治理及长效管理机制探索. 水处理技术. 2024(11): 14-19 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.9 %FULLTEXT: 9.9 %META: 86.1 %META: 86.1 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.8 %其他: 15.8 %其他: 0.3 %其他: 0.3 %上海: 4.2 %上海: 4.2 %东京: 0.8 %东京: 0.8 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 2.8 %兰州: 2.8 %北京: 6.4 %北京: 6.4 %十堰: 0.6 %十堰: 0.6 %南京: 2.2 %南京: 2.2 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %台州: 0.8 %台州: 0.8 %唐山: 0.3 %唐山: 0.3 %大同: 0.6 %大同: 0.6 %大连: 0.3 %大连: 0.3 %天津: 2.8 %天津: 2.8 %太原: 0.8 %太原: 0.8 %娄底: 1.4 %娄底: 1.4 %安康: 1.1 %安康: 1.1 %宜宾: 0.6 %宜宾: 0.6 %宜春: 0.3 %宜春: 0.3 %宣城: 0.8 %宣城: 0.8 %常德: 0.6 %常德: 0.6 %广州: 0.8 %广州: 0.8 %张家口: 0.3 %张家口: 0.3 %成都: 1.1 %成都: 1.1 %扬州: 0.3 %扬州: 0.3 %昆明: 3.1 %昆明: 3.1 %晋城: 0.3 %晋城: 0.3 %普洱: 0.6 %普洱: 0.6 %杭州: 1.7 %杭州: 1.7 %格兰特县: 0.3 %格兰特县: 0.3 %桂林: 0.6 %桂林: 0.6 %武汉: 5.0 %武汉: 5.0 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.3 %泰安: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 1.7 %济南: 1.7 %淄博: 0.6 %淄博: 0.6 %淮安: 1.7 %淮安: 1.7 %深圳: 0.3 %深圳: 0.3 %漯河: 2.5 %漯河: 2.5 %烟台: 0.6 %烟台: 0.6 %甘孜: 0.6 %甘孜: 0.6 %福州: 0.6 %福州: 0.6 %芒廷维尤: 6.7 %芒廷维尤: 6.7 %芝加哥: 0.8 %芝加哥: 0.8 %衡阳: 0.3 %衡阳: 0.3 %西宁: 6.4 %西宁: 6.4 %西安: 3.1 %西安: 3.1 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 9.2 %郑州: 9.2 %重庆: 0.8 %重庆: 0.8 %金昌: 0.3 %金昌: 0.3 %银川: 0.3 %银川: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %青岛: 0.6 %青岛: 0.6 %黄石: 0.6 %黄石: 0.6 %其他其他上海东京佛山保定兰州北京十堰南京南昌南通台州唐山大同大连天津太原娄底安康宜宾宜春宣城常德广州张家口成都扬州昆明晋城普洱杭州格兰特县桂林武汉沈阳泰安洛阳济南淄博淮安深圳漯河烟台甘孜福州芒廷维尤芝加哥衡阳西宁西安贵阳运城遵义邯郸郑州重庆金昌银川长沙长治青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (201) PDF downloads(6) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return