Citation: | XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001 |
[1] |
WU K, DOU X, ZHANG X, et al.The sodium-ion battery:an energy-storage technology for a carbon-neutral world[J/OL].Engineering, 2023,21(2).DOI: 10.1016/j.eng.2022.04.011.
|
[2] |
WU J N, LI X, JIN R.The response of the industrial system to the interrelationship approaching to carbon neutrality of carbon sources and sinks from carbon metabolism:coal chemical case study[J].Energy, 2022, 261:125172.
|
[3] |
HUANG B, XING K, NESS D, et al.Rethinking carbon-neutral built environment:urban dynamics and scenario analysis[J].Energy and Buildings, 2022, 255:111672.
|
[4] |
戴晓虎,张辰,章林伟,等.碳中和背景下污泥处理处置与资源化发展方向思考[J].给水排水, 2021, 47(3):1-5.
|
[5] |
宋新新,刘杰,林甲,等.碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J].环境科学学报, 2022, 42(4):53-63.
|
[6] |
ZHANG C, YANG X, TAN X J, et al.Sewage sludge treatment technology under the requirement of carbon neutrality:recent progress and perspectives[J].Bioresource Technology, 2022, 362:127853.
|
[7] |
戴晓虎,侯立安,章林伟,等.我国城镇污泥安全处置与资源化研究[J].中国工程科学, 2022, 24(5):145-153.
|
[8] |
DI COSTANZO N, CESARO A, DI CAPUA F, et al.Exploiting the nutrient potential of anaerobically digested sewage sludge:a review[J].Energies, 2021, 14(23):8149.
|
[9] |
MUNASINGHE-ARACHCHIGE S P, NIRMALAKHANDAN N.Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge[J].Environmental Science & Technology Letters, 2020, 7(7):450-459.
|
[10] |
WU B R, LI H W, ZHOU K, et al.Three birds with one stone:N/P recovery, dewaterability improvement, and facilitating liquid digestate treatment of anaerobically digested sludge[J].ACS Sustainable Chemistry & Engineering, 2022, 10(37):12402-12410.
|
[11] |
戴晓虎.我国污泥处理处置现状及发展趋势[J].科学, 2020, 72(6):30-34
,4.
|
[12] |
李慧莉,杨子显,陈志强,等.基质负荷对秸秆与污泥厌氧消化微生物群落结构的影响[J].哈尔滨工业大学学报, 2020, 52(11):18-25.
|
[13] |
陈珺,杨琦.污泥高级厌氧消化的应用现状与发展趋势[J].中国给水排水, 2016, 32(6):19-23.
|
[14] |
CHOI J M, HAN S K, LEE C Y.Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment[J].Bioresource Technology, 2018, 259:207-213.
|
[15] |
SHI Y, XU J P.A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion[J].Energy, 2023, 262:125243.
|
[16] |
林文聪,赵刚,刘伟,等.污水厂污泥典型处理处置工艺碳排放核算研究[J].环境工程, 2017, 35(7):175-179.
|
[17] |
郝晓地,王向阳,曹达啟,等.污水有机物中化石碳排放CO2辨析[J].中国给水排水, 2018, 34(2):13-17.
|
[18] |
IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL].https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, 2006-04-26.
|
[19] |
陈菊香,张疆.厌氧消化/热电联产用于污水厂污泥处理改造[J].中国给水排水, 2012, 28(22):102-104.
|
[20] |
李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学,2023,44(2):1181-1190.
|
[21] |
王琳,李德彬,刘子为,等.污泥处理处置路径碳排放分析[J].中国环境科学, 2022, 42(5):2404-2412.
|
[22] |
国家市场监督管理总局,国家标准化管理委员会.综合能耗计算通则:GB/T 2589-2020[S].
|
[23] |
IPCC.2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory[R].
|
[24] |
中国特种设备检测研究院,国家质量监督检验检疫总局,北京特种设备行业协会,等.锅炉节能技术监督管理规程[Z].2010:17P.;A4.
|
[25] |
IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 5):waste[EB/OL].2006.http://www.ipccnggip.iges.or.jp/public/2006gl/vol5.html.2015-08-16.
|
[26] |
郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报, 2017, 11(2):673-682.
|
[27] |
宋晓雅.污泥热水解厌氧消化与常规厌氧消化的运行比较[J].给水排水, 2019, 55(3):26-30.
|
[28] |
张琦东.热水解对污泥厌氧消化可降解性的影响及其机理探究[J].工业安全与环保, 2018, 44(2):57-60.
|
[29] |
次瀚林,王先恺,董滨.不同污泥干化焚烧技术路线全链条碳足迹分析[J].净水技术, 2021, 40(6):77-82
,99.
|
[30] |
杭世珺,关春雨.污泥厌氧消化工艺运行阶段的碳减排量分析[J].给水排水, 2013, 49(4):44-50.
|
[31] |
王昱琛,宿程远,丁凤秀,等.厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望[J].广西师范大学学报(自然科学版),2022,40(5):406-417.
|
[32] |
丁月玲,张焕焕,董滨,等.有机生活垃圾与脱水污泥协同厌氧消化工艺的性能[J].净水技术, 2017, 36(2):40-44
,50.
|
[33] |
ZHOU P, MESHREF M N A, DHAR B R.Optimization of thermal hydrolysis process for enhancing anaerobic digestion in a wastewater treatment plant with existing primary sludge fermentation[J].Bioresource Technology, 2021, 321:124498.
|
[34] |
LU D, SUN F Q, ZHOU Y.Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J].Bioresource Technology, 2018, 266:60-67.
|
[35] |
LI H, JIN C, ZHANG Z Y, et al.Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways[J].Energy, 2017, 126:649-657.
|
[36] |
ZHANG L, ZHANG Y T, ZHANG Q, et al.Sludge gas production capabilities under various operational conditions of the sludge thermal hydrolysis pretreatment process[J].Journal of the Energy Institute, 2014, 87(2):121-126.
|
[37] |
LI Y, TANG Y P, XIONG P, et al.High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J].Water Research, 2020, 176:115763.
|
[38] |
ISMAIL A, KAKAR F L, ELBESHBISHY E, et al.Combined thermal hydrolysis pretreatment and anaerobic co-digestion of waste activated sludge and food waste[J].Renewable Energy, 2022, 195:528-539.
|
[39] |
CAO X Q, YUAN H Y, TIAN Y Q.Anaerobic co-digestion of sewage sludge pretreated by thermal hydrolysis and food waste:gas production, dewatering performance, and community structure[J].Environ Technol, 2022,16:1-12.
|
[40] |
郝晓地,唐兴,曹达啓.剩余污泥厌氧共消化技术研究现状及应用趋势[J].环境工程学报, 2016, 10(12):6809-6818.
|