Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Xing, HU Kai, LEI Chen-yu, CHEN Wei. EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023
Citation: CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006

ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS

doi: 10.13205/j.hjgc.202307006
  • Received Date: 2022-03-06
  • With China's food waste production increasing yearly, recycling energy from food waste becomes a key issue in solid waste treatment. In order to explore the carbon emissions and energy usage of several main food waste recycling methods, this paper used the accounting methods recommended by IPCC and related literature to evaluate the carbon offset and energy recovery of four treatment methods, sewage co-treatment, anaerobic digestion, incineration and composting. The results showed that the carbon offset potential of the four treatment methods was -56.9, -88.6, 44.2, and 222.0 kg CO2/t FW, respectively. The energy recovery potential was -116.0, -215.0, 58.9, and 61.0 kW·h/t FW, respectively. According to the sensitivity analysis, the co-treatment and anaerobic digestion mode have strong stability in addition to the technical influence, indicating that co-treatment and anaerobic digestion are ideal resource treatment methods. The incineration method involves a large amount of carbon emissions due to the dehydration process, and the overall stability is poor. Composting can't achieve carbon emission reduction and energy recovery, so its application should be minimized. To sum up, the priority sequence of food waste recycling disposal was anaerobic digestion, sewage co-treatment, incineration and composting.
  • [1]
    刘晓兰.干式厌氧发酵处理厨余垃圾的工况分析[J].节能与环保,2022(5):44-46.
    [2]
    刘继伟, 江燕航, 艾克来木·艾合买提,等.厨余垃圾生物水解过程中氯化物的迁移转化[J].中国给水排水, 2021,37(23):52-56.
    [3]
    JIN C X, SUN S Q, YANG D H, et al.Anaerobic digestion:an alternative resource treatment option for food waste in China[J].Science of the Total Environment, 2021,779:146397.
    [4]
    郝晓地, 周鹏, 曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报, 2017, 11(2):673-682.
    [5]
    ZAN F X, IQBAL A, LU X J, et al."Food waste-wastewater-energy/resource" nexus:integrating food waste management with wastewater treatment towards urban sustainability[J].Water Research, 2022, 211:118089.
    [6]
    杨建新, 刘鹤.厨余垃圾粉碎机应用的环境影响研究现状与展望[J].环境工程学报, 2022, 16(9):2949-2957.
    [7]
    IQBAL A, ZAN F X, SIDDIQUI M A, et al.Integrated treatment of food waste with wastewater and sewage sludge:energy and carbon footprint analysis with economic implications[J].Science of the Total Environment, 2022,825:154052.
    [8]
    郝晓地, 刘然彬, 胡沅胜.污水处理厂"碳中和"评价方法创建与案例分析[J].中国给水排水, 2014, 30(2):1-7.
    [9]
    IQBAL A, EKAMA G A, ZAN F, et al.Potential for co-disposal and treatment of food waste with sewage:a plant-wide steady-state model evaluation[J].Water Research, 2020, 184:116175.
    [10]
    郝晓地, 陈奇, 李季,等.污泥干化焚烧乃污泥处理/处置终极方式[J].中国给水排水, 2019, 35(4):35-42.
    [11]
    缪平, 张志华, 薛露肖,等.低温带式干化工艺用于自来水厂余泥处理中试效果试验[J].净水技术, 2022,41(增刊1):202-205,258.
    [12]
    YU Q Q, LI H,et al.Life cycle environmental performance of two restaurant food waste management strategies at Shenzhen, China.[J].Journal of Material Cycles and Waste Management, 2021, 23:826-839.
    [13]
    王琳, 李德彬, 刘子为,等.泥处理处置路径碳排放分析[J].中国环境科学, 2022,42(5):2404-2412.
    [14]
    李欢, 周颖君, 刘建国,等.我国厨余垃圾处理模式的综合比较和优化策略[J].环境工程学报, 2021,15(7):2398-2408.
    [15]
    郝晓地, 王向阳, 曹达啟,等.污水有机物中化石碳排放CO2辨析[J].中国给水排水, 2018, 34(2):13-17.
    [16]
    李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学,2023,44(2):1181-1190.
    [17]
    周俊, 王梦瑶, 王改红, 等.餐厨垃圾资源化利用技术研究现状及展望[J].生物资源, 2020, 42(1):87-96.
    [18]
    IQBAL A, ZAN F X, LIU X M, et al.Integrated municipal solid waste management scheme of Hong Kong:a comprehensive analysis in terms of global warming potential and energy use[J].Journal of Cleaner Production, 2019, 225(10):1079-1088.
    [19]
    IPCC.2006 IPCC guidelines for national greenhouse gas inventories (Volume 5):waste[EB/OL].[2015-08-16].http://www.ipccnggip.iges.or.jp/public/2006gl/vol5.html.
    [20]
    STEMANN S W, RENSBURG P V, RISTOW N E, et al.Integrated chemical/physical and biological processes modeling Part 2-Anaerobic digestion of sewage sludges[J].Water Science & Technology, 2005, 54(5):109-117.
    [21]
    刘荣杰, 邓舟, 梁卫坤,等.深圳市政污水厂对家庭厨余垃圾粉碎直排的耐受分析[J].环境卫生工程, 2018, 26(4):43-47.
    [22]
    边潇, 宫徽, 阎中,等.餐厨垃圾不同"收集-处理"模式的碳排放估算对比[J].环境工程学报,2021,13(2):449-456.
    [23]
    CHEN H B, ZENG L, WANG D B, et al.Recent advances in nitrous oxide production and mitigation in wastewater treatment[J].Water Research, 2020, 184:116168.
    [24]
    YU Q Q, LI H, DENG Z, et al.Comparative assessment on two full-scale food waste treatment plants with different anaerobic digestion processes[J].Journal of Cleaner Production, 2020, 263:121625.
    [25]
    SHARMA B K, CHANDEL M K.A life cycle assessment to compare composting schemes for the treatment of municipal solid waste in mumbai, india[C]//Sardinia 2017/Sixteenth International Waste Management and Landfill Symposium.2017.
    [26]
    LI Y Y, JIN Y Y, LI J H, et al.Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste[J].Applied Energy, 2016, 172:47-58.
  • Relative Articles

    [1]QIANG Chunmei, NI Xinxin, WU Jichun, XU Fen, LIU Yuanyuan. Screening method and engineering application of combined remediation technology for petrochemical aggregation sites based on AHP-TOPSIS[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 211-222. doi: 10.13205/j.hjgc.202501023
    [2]CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022
    [3]ZHAO Bin, PENG Tianyue, ZHANG Hao, WANG Liuwei, ZONG Wenjing, HOU Deyi. CHARACTERISTICS IDENTIFICATION AND HEALTH RISK ASSESSMENT OF MERCURY CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 205-212. doi: 10.13205/j.hjgc.202304028
    [4]LU Ailing, ZHU Dongyun, ZHANG Hong, CAO Han, ZHANG Jing. EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 176-180. doi: 10.13205/j.hjgc.202308022
    [5]TENG Hui, LI Dong, WU Junru. INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 143-151. doi: 10.13205/j.hjgc.202211020
    [6]TU Degang, FENG Tao, YANG Guodong, LUO Weiwei, NIE Beili. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN AN ABANDONED MACHINERY PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 217-223. doi: 10.13205/j.hjgc.202204031
    [7]WANG Jinnan, WU Yufeng, LI Liangzhong, YU Lu, YANG Mengchuan, LI Bin, GUO Lianjie. RESEARCH PROGRESS OF BARRIER TECHNOLOGIES FOR SITE COMBINED HEAVY METAL POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 244-253. doi: 10.13205/j.hjgc.202204034
    [8]NIU Zhenru, LI Feifei, ZHANG Youjun, QU Weigui, CONG Hui, LIU Shigang, ZHANG Jia. SPATIAL DISTRIBUTION AND CAUSES OF CHLORINATED HYDROCARBONS POLLUTION IN SOIL IN A TYPICAL CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 94-101,228. doi: 10.13205/j.hjgc.202203015
    [9]ZHANG Shao-kang, GONG Xiao-feng, LIN Yuan, WU Li, XIONG Jie-qian, WU Jing-lin. REMEDIATION OF Cd CONTAMINATED SOIL BY ARTIFICIAL STRUVITE COMBINED WITH RYEGRASS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 193-198. doi: 10.13205/j.hjgc.202109027
    [10]LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
    [11]MENG Xiang-shuai, CHEN Hong-han, HE Ya-ping, ZHENG Cong-qi, YUE Xi. ESTABLISHMENT OF THE ENVIRONMENTAL INDEXES IN SELECTION OF REMEDIATION SCHEMES: A CASE STUDY OF AN ABANDONED COKING SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 153-159. doi: 10.13205/j.hjgc.202102025
    [12]HUO Li-li, HU Yu-lin, CHEN Wei, ZHONG Hua, LIU Guan-sheng, YANG Xin. TRANSPORT BEHAVIORS AND INFLUENCE FACTORS OF SURFACTANTS IN SUBSURFACE POROUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 207-215. doi: 10.13205/j.hjgc.202010033
    [13]LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032
    [14]CHEN Wen-hao, XU Guo-hui, ZHANG Yan-yan. LAYOUT OPTIMIZATION OF PUMPING AND INJECTION WELLS FOR LEACHING RESTORATION IN ENCLOSED CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 211-217. doi: 10.13205/j.hjgc.202011034
    [15]Liu Zengjun, Xia Xu, Zhang Xu, Li Guanghe, Jiang Lin. STUDY OF REMEDIATION AND LONG-TERM EFFECT OF AGENTS ON CHROMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 160-163. doi: 10.13205/j.hjgc.201502036
    [16]Zhu Wenyuan Song Zixin Li Shefeng Liu Gengsheng Tao Ling Xu Xinying Qin Hui, . RESEARCH ON LOGISTICS ORGANIZATION IN PROCESS OF CONTAMINATED SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 164-167. doi: 10.13205/j.hjgc.201502037
    [17]Deng Yirong, Lin Ting, Xiao Rongbo, Zhao Lu, Han Cunliang. RECENT ADVANCES IN THE APPLICATION OF EKR-PRB IN CONTAMINATED SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 152-157. doi: 10.13205/j.hjgc.201510034
  • Cited by

    Periodical cited type(3)

    1. 田伟超,陈融旭,田世民,王新,刘佳昕. 多倍体剑叶芦竹对豫西丘陵区坡面径流污染阻控效果研究. 环境工程. 2024(12): 60-65 . 本站查看
    2. 胡海波,邓文斌,王霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展. 浙江农林大学学报. 2022(01): 214-222 .
    3. 周传庭,王梦玉,幸韵欣,朱峰,安莹,周振. 城市初期雨水污染及处理措施的研究进展. 净水技术. 2022(07): 17-26 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.5 %FULLTEXT: 11.5 %META: 85.0 %META: 85.0 %PDF: 3.5 %PDF: 3.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 35.8 %其他: 35.8 %北京: 4.0 %北京: 4.0 %十堰: 0.4 %十堰: 0.4 %南京: 3.1 %南京: 3.1 %南宁: 0.4 %南宁: 0.4 %合肥: 0.4 %合肥: 0.4 %嘉兴: 0.9 %嘉兴: 0.9 %大连: 1.3 %大连: 1.3 %天津: 0.9 %天津: 0.9 %宣城: 0.4 %宣城: 0.4 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %张家口: 3.1 %张家口: 3.1 %成都: 0.9 %成都: 0.9 %扬州: 0.4 %扬州: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 0.4 %昆明: 0.4 %杭州: 6.2 %杭州: 6.2 %武汉: 5.3 %武汉: 5.3 %济宁: 0.9 %济宁: 0.9 %深圳: 2.7 %深圳: 2.7 %温州: 0.4 %温州: 0.4 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %芝加哥: 2.7 %芝加哥: 2.7 %荆门: 1.3 %荆门: 1.3 %衡阳: 0.4 %衡阳: 0.4 %西宁: 1.8 %西宁: 1.8 %西安: 0.9 %西安: 0.9 %运城: 2.2 %运城: 2.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 1.3 %邯郸: 1.3 %郑州: 1.3 %郑州: 1.3 %重庆: 0.4 %重庆: 0.4 %其他北京十堰南京南宁合肥嘉兴大连天津宣城常州常德张家口成都扬州无锡昆明杭州武汉济宁深圳温州漯河石家庄芒廷维尤芝加哥荆门衡阳西宁西安运城遵义邯郸郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (241) PDF downloads(15) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return