Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Wei-hao, WANG Hua, ZENG Yi-chuan, FANG Shao-wen, WANG Shi-gang, LI Yuan-yuan, ZHANG Xin-yue. SPATIOTEMPORAL VARIATION OF DRIVING FACTORS OF ALGAL PROLIFERATION IN A LARGE RIVER-CONNECTED LAKE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 64-71,128. doi: 10.13205/j.hjgc.202110009
Citation: LI Wei, NING Yuyang, LIU Ning, GAO Mingjie. ADSORPTION PERFORMANCE OF PEO-BASED MOFs HYBRID FOAM MATERIALS ON TETRACYCLINE AND Cu2+[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 76-85. doi: 10.13205/j.hjgc.202307011

ADSORPTION PERFORMANCE OF PEO-BASED MOFs HYBRID FOAM MATERIALS ON TETRACYCLINE AND Cu2+

doi: 10.13205/j.hjgc.202307011
  • Received Date: 2023-01-19
  • A metal-organic backbone hybrid foam MIL-100(Fe)/PEO was prepared by the ice-template-freeze-drying method. X-ray diffraction, nitrogen adsorption-desorption, scanning electron microscopy, and TG-DSC techniques were used to characterize the structural morphology and elemental composition of the surface of the hybrid foam. The factors influencing the adsorption performance of the hybrid foam and the adsorption kinetics, adsorption thermodynamics and adsorption isotherm models were analyzed by adsorption experiments, and the stability of the hybrid foam separation and regeneration was studied using recycling stability tests. The results showed that MIL-100(Fe)/PEO hybrid foam had strong mechanical strength and rich porous structure, and retained the properties of MIL-100(Fe) itself. The maximum adsorption of tetracycline (TC) and Cu2+ by MIL-100(Fe)/PEO reached 85.02 mg/g and 87.66 mg/g at a MIL-100(Fe)/PEO dosing of 30 mg, an adsorption time of 12 h, an initial adsorption concentration of 20 mg/L, and neutral pH conditions. The adsorption process of the material followed the proposed secondary kinetics with the Langmuir isothermal adsorption model and was an exothermic, spontaneous process. The removal rates of both TC and Cu2+ by MIL-100(Fe)/PEO were maintained at about 70% after 8 cycles of adsorption. MIL-100(Fe)/PEO heterogeneous foam is an efficient and stable adsorbent and promising in application in the removal of mixed pollutants of tetracycline and Cu2+ from wastewater.
  • [1]
    乔娜.高铁酸钾控制水体典型抗生素与重金属复合污染的研究[D].南京:东南大学,2021.
    [2]
    KUMMERER K.Antibiotics in the aquatic environment:a review-Part Ⅰ[J].Chemosphere, 2009, 75(4):417-434.
    [3]
    于婉柔.南水北调中线干渠抗生素污染分布特征及环境行为研究[D].北京:北京交通大学, 2021.
    [4]
    LI N, ZHOU L, JIN X Y, et al.Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework[J].Journal of Hazardous Materials, 2019, 366:563-572.
    [5]
    GUO Z Q, YANG F J, YANG R R, et al.Preparation of novel ZnO-NP@Zn-MOF-74 composites for simultaneous removal of copper and tetracycline from aqueous solution[J].Separation and Purification Technology, 2021, 274:118949.
    [6]
    MARTINS V V, ZANETTI M O B, PITONDO-SILVA A, et al.Aquatic environments polluted with antibiotics and heavy metals:a human health hazard[J].Environmental Science and Pollution Research, 2014, 21:5873-5878.
    [7]
    PHOON B L, ONG C C, SAHEED M S M, et al.Conventional and emerging technologies for removal of antibiotics from wastewater[J].Journal of Hazardous Materials, 2020, 400:122961.
    [8]
    唐婷.磺胺二甲基嘧啶与常见重金属的络合及其对镉在针铁矿上吸附行为的影响[D].广州:华南理工大学, 2016.
    [9]
    ZHU Q L, XU Q.Metal-organic framework composites[J].Chemical Society Reviews, 2014, 43(16):5468-5512.
    [10]
    马丽, 李莹, 衣梓硕, 等.ZIF-8@PI纤维纳米复合膜光催化剂的制备[J].化工新型材料, 2022, 50(7):95-98

    ,104.
    [11]
    DOU Y B, ZHANG W J, KAISER A.Electrospinning of metal-organic frameworks for energy and environmental applications[J].Advanced Science, 2020, 7(3):1902590.
    [12]
    张琪欣.新型MIL-100(Fe)基MOFs材料的制备及其对Sr2+和Cs+的吸附[D].南京:南京航空航天大学, 2021.
    [13]
    DU X D,WANG C C,LIU J G,et al.Extensive and selective adsorptionof ZIF-67 towards organic dyes:performance and mechanism[J].Journal of Colloid and Interface Science, 2017, 506:437-441.
    [14]
    YANG Z H, CAO J, CHEN Y P, et al.Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr (Ⅵ) from aqueous solution[J].Microporous and Mesoporous Materials, 2019, 277:277-285.
    [15]
    曾德军.水稳定金属有机框架HKUST-1@聚合物复合材料对U(Ⅵ)的吸附行为研究[D].南昌:东华理工大学, 2021.
    [16]
    任龙芳, 高晓东, 张馨月, 等.UiO-66-NH2/MoS2@PUF的制备及其对Cr(Ⅵ)的吸附[J/OL].精细化工:1-13[2023-02-25

    ].https://doi.org/10.13550/j.jxhg.20220475.
    [17]
    童敏曼, 赵旭东, 解丽婷, 等.金属-有机骨架材料用于废水处理[J].化学进展, 2012, 24(9):1646-1655.
    [18]
    ZHANG H F, DANG Q F, LIU C S, et al.Fabrication of methyl acrylate and tetraethylenepentamine grafted magnetic chitosan microparticles for capture of Cd(Ⅱ) from aqueous solutions[J].J Hazard Mater, 2019, 366:346-357.
    [19]
    LIU K, ZHANG S Y, HU X Y, et al.Understanding the adsorption of PFOA on MIL-101(Cr)-based anionic-exchange metal-organic frameworks:comparing DFT calculations with aqueous sorption experiments[J].Environmental Science & Technology, 2015, 49(14):8657-8665.
    [20]
    刘芳, 潘婷婷, 任秀蓉, 等.HCDs@MIL-100(Fe)吸附剂的制备及其苯吸附性能研究[J].化学学报, 2022, 80(7):879-887.
    [21]
    MA X L, WANG W L, SUN C G, et al.Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal[J].Science of the Total Environment, 2021, 793:148622.
    [22]
    DENG S, ZHANG G S, CHEN S W, et al.Rapid and effective preparation of a HPEI modified MIL-100(Fe) based on cellulose fiber with a microwave irradiation method for enhanced arsenic removal in water[J].Journal of Materials Chemistry A, 2016, 4(41):15851-15860.
    [23]
    SUN X J, GU X L, XU W T, et al.Novel hierarchical Fe (Ⅲ)-doped Cu-MOFs with enhanced adsorption of benzene vapor[J].Frontiers in Chemistry, 2019, 7:652.
    [24]
    方颖.金属有机框架材料MIL-100(Fe)和ZIF-67对Cr(Ⅵ)吸附性能的研究[D].长沙:湖南大学, 2019.
    [25]
    LIN S H, CHEN M L.Treatment of textile wastewater by chemical methods for reuse[J].Water Research, 2019, 56(4):868-876.
    [26]
    HERNANDEZ R, ZAPPI M, COLUCCI J, et al.Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water[J].Journal of Hazardous Materials, 2002, 112(192):33-50.
    [27]
    CHEN M, ZHU M X, ZHU Y, et al.Collision of emerging and traditional methods for antibiotics removal:taking constructed wetlands and PEO as an example[J].Water Research, 2019, 178(15):100175.
    [28]
    冯江涛, 王桢钰, 闫炫冶, 等.吸附去除水体重金属离子的影响因素研究进展[J].西安交通大学学报, 2022, 56(2):1-16.
    [29]
    WANG F Y, WANG H, MA J W.Adsorption of cadmium (Ⅱ) ions from aqueous solution by a new low-cost adsorbent:bamboo charcoal[J].Journal of Hazardous Materials, 2010, 177(1/2/3):300-306.
    [30]
    DANTAS R F, CONTRERAS S, SANS C, et al.Sulfamethoxazole abatement by means of PEO[J].Journal of Hazardous Materials, 2018, 150(3):790-794.
    [31]
    王少婷, 强涛涛, 王志宏, 等.ZIF-8负载海藻酸钠/氧化石墨烯基底用于吸附盐酸四环素[J].精细化工, 2022, 39(10):2122-2131.
    [32]
    KONG Y, ZHUANG Y, HAN K, et al.Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel[J].Journal of Colloid and Interface Science, 2020, 588:124360.
    [33]
    LI Z Q, YANG J C, SUI K W, et al.Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J].Materials Letters, 2015, 160(9):412-414.
    [34]
    PETROVIC M, BARCELÓ D.LC-MS for identifying photodegradation products of pharmaceuticals in the environment[J].TrAC Trends in Analytical Chemistry, 2007, 26(6):486-493.
    [35]
    GIOKAS D L, VLESSIDIS A G.Application of a novel chemometric approach to the determination of aqueous photolysis rates of ZIF-8 in natural waters[J].Water Research, 2007, 134(1):288-295.
    [36]
    李婷婷, 何帆, 蒋丹枫, 等.多金属普鲁士蓝类化合物亚铁氰化铜镍钴对铯离子的吸附[J].材料导报, 2016, 30(22):71-76.
    [37]
    曾辉平, 王繁烁, 于亚萍, 等.壳聚糖海藻酸钠铁锰泥吸附剂制备与除As(Ⅴ)研究[J].中国环境科学, 2020, 40(3):1146-1155.
    [38]
    CHEN S H, ZHANG J, ZHANG C L, et al.Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from phragmites australis[J].Desalination, 2010, 252(1/2/3):149-156.
    [39]
    HU Q S, LIU Y L, GU X Y, et al.Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles[J].Chemosphere, 2017, 181(12):328-336.
    [40]
    SENOSY I A, ZHANG X Z, LU Z H, et al.Magnetic metal-organic framework MIL-100(Fe)/polyethyleneimine composite as an adsorbent for the magnetic solid-phase extraction of fungicides and their determination using HPLC-UV[J].Microchimica Acta, 2021, 188(2):1-9.
  • Relative Articles

    [1]DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017
    [2]HU Xiaomin, JIANG Shuqi. TREATMENT OF EMULSIFIED OIL WASTEWATER BY PULSE ELECTRIC FIELD DEMULSIFICATION-ACTIVATED PERSULFATE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 55-62. doi: 10.13205/j.hjgc.202401008
    [3]SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005
    [4]REN Yuqing, WU Wei, WEI Haijuan, ZHOU Bin, XING Yunxin, HE Kankan, ZHOU Zhen. EFFECTS OF PROPERTIES AND STRUCTURE OF POLYACRYLAMIDE ON SLUDGES CONDITIONING AND DEWATERING PERFORMANCE BEFORE AND AFTER ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 57-64. doi: 10.13205/j.hjgc.202308008
    [5]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [6]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [7]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [8]WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
    [9]ZOU Zhikun, CHEN Yudao, ZHENG Gao, LU Renqian, YANG Pengfei, WU Weizhong. EFFECTS OF ETHANOL ON REMOVAL OF BTEX FROM GASOLINE BY PERSULFATE IN LIMESTONE AQUEOUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 98-104. doi: 10.13205/j.hjgc.202212013
    [10]XIE Min, WU Xin, WANG Xiao, XU Su, XIAO Ben-yi, GUO Xue-song. OPTIMIZATION ON EXCESS SLUDGE DEWATERING OF RURAL DISPERSED WASTEWATER TREATMENT FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 15-20. doi: 10.13205/j.hjgc.202106003
    [11]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [12]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [13]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [14]LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016
    [15]LAN Bing-bing, JIN Ruo-fei, LIU Yan-song, LIU Guang-fei, ZHOU Ji-ti. EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 122-126. doi: 10.13205/j.hjgc.202007019
    [16]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [17]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
    [18]CHEN Wei-gang, WU Hai-xia, FAN Jia-wei. ACTIVATED CARBON HETEROGENEOUS ACTIVATION OF DIFFERENT PERSULFATES TO DEGRADATION AZO DYE ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 113-118,57. doi: 10.13205/j.hjgc.202008019
    [19]GUO Zhao-qiang, SHANG Shuang, LAN Kui, LI Ze-shan, XIONG Tao, ZHANG Juan-juan, WANG Yan, QIN Zhen-hua, LI Jian-fen. HYDROGEN-RICH SYNGAS PRODUCTION BY CO-PYROLYSIS OF WHEAT STALK AND WET SEWAGE SLUDGE WITH DIFFERENT MOISTURE CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 160-164,214. doi: 10.13205/j.hjgc.202005028
    [20]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
  • Cited by

    Periodical cited type(6)

    1. 黎栩霞,王裕东,肖佑鹏,徐旭,王海鹏,陈伊梦,林俊川,黄桂松,黄振国,孙萍,麦有全,杨尚波,许旺. 深圳近岸海域水质遥感监测及时空变化. 环境工程. 2024(01): 243-252 . 本站查看
    2. 胡芳,刘聚涛,杨平,温春云,张兰婷,张洁. 鄱阳湖蓝藻时空分布特征及其驱动因子研究. 长江流域资源与环境. 2024(03): 605-614 .
    3. 钱春龙,曾一川,袁伟皓,吴怡. 基于时间序列的鄱阳湖Chl-a预测模型优化构建. 长江科学院院报. 2023(10): 14-21 .
    4. 任永琴,金柱成,俞真元,王晓丽,彭士涛. 基于双向门控循环单元的地表水氨氮预测. 中国环境科学. 2022(02): 672-679 .
    5. 朱江伟,马鹏飞,杜晓,杨言言,郝晓刚,罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离. 化工学报. 2022(07): 3057-3067 .
    6. 张天衍,董增川,罗赟,石晴宜,韩亚雷,崔璨,周强,张游. 基于水质-水位二元响应关系推求过水型湖泊适宜生态水位研究. 湖泊科学. 2022(05): 1670-1682 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.5 %FULLTEXT: 8.5 %META: 85.5 %META: 85.5 %PDF: 6.0 %PDF: 6.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.3 %其他: 0.3 %上海: 1.6 %上海: 1.6 %上饶: 0.5 %上饶: 0.5 %东京: 0.3 %东京: 0.3 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %保定: 0.3 %保定: 0.3 %兰州: 1.1 %兰州: 1.1 %北京: 13.2 %北京: 13.2 %南京: 3.5 %南京: 3.5 %南宁: 0.3 %南宁: 0.3 %南昌: 1.1 %南昌: 1.1 %台州: 1.1 %台州: 1.1 %吉林: 0.5 %吉林: 0.5 %呼和浩特: 0.3 %呼和浩特: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 2.2 %嘉兴: 2.2 %大同: 0.5 %大同: 0.5 %天津: 2.7 %天津: 2.7 %安康: 0.5 %安康: 0.5 %常州: 0.3 %常州: 0.3 %常德: 0.5 %常德: 0.5 %广州: 1.9 %广州: 1.9 %庆阳: 1.6 %庆阳: 1.6 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 1.9 %张家口: 1.9 %德阳: 0.3 %德阳: 0.3 %成都: 2.7 %成都: 2.7 %扬州: 0.8 %扬州: 0.8 %新乡: 0.5 %新乡: 0.5 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 4.9 %武汉: 4.9 %江门: 0.3 %江门: 0.3 %洛阳: 0.3 %洛阳: 0.3 %海口: 0.3 %海口: 0.3 %深圳: 0.8 %深圳: 0.8 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.4 %漯河: 1.4 %烟台: 0.3 %烟台: 0.3 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.5 %福州: 0.5 %芒廷维尤: 7.3 %芒廷维尤: 7.3 %芝加哥: 1.4 %芝加哥: 1.4 %菏泽: 0.8 %菏泽: 0.8 %蚌埠: 2.2 %蚌埠: 2.2 %衡水: 1.6 %衡水: 1.6 %衢州: 0.5 %衢州: 0.5 %西宁: 6.8 %西宁: 6.8 %西安: 0.3 %西安: 0.3 %贵港: 0.8 %贵港: 0.8 %贵阳: 1.1 %贵阳: 1.1 %资阳: 0.5 %资阳: 0.5 %运城: 1.9 %运城: 1.9 %通辽: 1.4 %通辽: 1.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %龙岩: 1.6 %龙岩: 1.6 %其他其他上海上饶东京东莞临汾保定兰州北京南京南宁南昌台州吉林呼和浩特唐山嘉兴大同天津安康常州常德广州庆阳弗吉尼亚州张家口德阳成都扬州新乡无锡昆明晋城杭州武汉江门洛阳海口深圳温州湖州漯河烟台盐城石家庄福州芒廷维尤芝加哥菏泽蚌埠衡水衢州西宁西安贵港贵阳资阳运城通辽遵义邯郸郑州重庆长沙龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(2) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return