Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021
Citation: SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020

EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE

doi: 10.13205/j.hjgc.202307020
  • Received Date: 2022-10-16
  • In order to improve the methane production performance of food waste and spent mushroom substrate high temperature co-digestion, we set four fermentation groups:control, electro-fermentation, activated carbon, and electro-fermentation+activated carbon. By comparing the cumulative methane yield, electrochemical characteristics, and the stability of anaerobic digestion system, we studied the effects of electro-fermentation and the addition of activated carbon on high-temperature anaerobic co-digestion of food waste and spent mushroom substrate. The results showed that, compared with the control group, the cumulative methane production of electro-fermentation, activated carbon, and electro-fermentation+activated carbon groups increased by 6.2%, 7.6% and 21.9%, respectively; meanwhile, the biodegradability increased by 6.4%, 7.6% and 16.9%, respectively, indicating that electro-fermentation and addition activated carbon could synergistically promote gas production. Both the application of a weak electric field and the addition of activated carbon can reduce the concentration of free ammonia (FAN), and accelerate the transformation and degradation of VFAs by methanogens. The reduction of methanogenic bacteria activity caused by the accumulation of FAN and VFAs in the fermentation system was alleviated. In addition, electro-fermentation, electro-fermentation+activated carbon groups had obvious REDOX peak in the volt-ampere characteristic curve, further illustrating that a weak electric field and adding activated carbon could promote cell proliferation and the electron transfer process, accelerate electrochemical REDOX reaction, and enhance the stability of anaerobic digestion system and the target product yield. This study provides a scientific basis for promoting the development of new cross-research directions of microbiology and electrochemistry, and new ways to food waste resource utilization.
  • [1]
    MELIKOGLU M, LIN C S K, WEBB C.Analysing global food waste problem:pinpointing the facts and estimating the energy content[J].Central European Journal of Engineering, 2013, 3(2):157-164.
    [2]
    MA X X, YU M, SONG N, et al.Effect of ethanol pre-fermentation on organic load rate and stability of semi-continuous anaerobic digestion of food waste[J].Bioresource Technology, 2020, 299:122587.
    [3]
    REN Y Y, YU M, WU C F, et al.A comprehensive review on food waste anaerobic digestion:research updates and tendencies[J].Bioresource Technology, 2018, 247:1069-1076.
    [4]
    GAO Z, MA Y Q, LIU Y, et al.Waste cooking oil used as carbon source for microbial lipid production:promoter or inhibitor[J].Environmental Research, 2022, 203:111881.
    [5]
    WANG P, WANG H T, QIU Y Q, et al.Microbial characteristics in anaerobic digestion process of food waste for methane production:a review[J].Bioresour Technol, 2018, 248(Pt A):29-36.
    [6]
    AMPESE L C, SGANZERLA W G, DI DOMENICO ZIERO H, et al.Research progress, trends, and updates on anaerobic digestion technology:a bibliometric analysis[J].Journal of Cleaner Production, 2022, 331:130004.
    [7]
    许跃,廖欢, 张静,等.颗粒活性炭强化餐厨垃圾中食用油厌氧消化产甲烷[J].中国给水排水, 2022, 38(11):109-114.
    [8]
    HU W, DI Q, LIANG T, et al.Effects of spent mushroom substrate biochar on growth of oyster mushroom (Pleurotus ostreatus)[J].Environmental Technology & Innovation, 2022, 28.
    [9]
    张文哲,陈静,刘玉,等.中温和高温厌氧消化的比较[J].化工进展, 2018, 37(12):4853-4861.
    [10]
    WILSON C A, MURTHY S M, FANG Y, et al.The effect of temperature on the performance and stability of thermophilic anaerobic digestion[J].Water Sci Technol, 2008, 57(2):297-304.
    [11]
    郭香麟,左剑恶,史绪川,等.餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J].环境科学, 2017, 38(7):3070-3077.
    [12]
    PARK J, LEE B, TIAN D, et al.Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J].Bioresource Technology, 2018,247:226-233.
    [13]
    LIU S, DENG Z, LI H, et al.Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste[J].Bioresource Technology, 2019,288:121536.
    [14]
    龙宪钢,许坤德,杨思霞,等.电化学厌氧消化的研究进展[J].水处理技术, 2022, 48(3):30-35.
    [15]
    QIN X, LU X Q, CAI T, et al.Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge[J].Science of the Total Environment, 2021,789:147859.
    [16]
    ZHAO Z Q, LI Y, ZHANG Y B, et al.Sparking anaerobic digestion:promoting direct interspecies electron transfer to enhance methane production[J].iScience, 2020,23(12):101794.
    [17]
    PENG H, ZHANG Y B, TAN D M, et al.Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion[J].Bioresource Technology, 2018,249:666-672.
    [18]
    LIN C B, WU P, LIU Y D, et al.Enhanced biogas production and biodegradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system[J].Chemical Engineering Journal, 2019,365:1-9.
    [19]
    VU M T, NOORI M T, MIN B.Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems[J].Bioresource Technology, 2020, 296:122265.
  • Relative Articles

    [1]FANG Lixing, WANG Kai, WANG Tulong, XU Long, YAN Lixue. Design of remediation process for volatile organic pollution sites with air sparging based on TOUGH2[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 204-210. doi: 10.13205/j.hjgc.202501022
    [2]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [3]LIN Huili, JIN Zhaodi, ZHANG Shuli, ZHANG Guangxue, YU Qun, ZHANG Min. NUMERICAL SIMULATION AND EVALUATION OF INDIRECT THERMAL DESORPTION EQUIPMENT FOR PETROLEUM HYDROCARBON CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 261-267. doi: 10.13205/j.hjgc.202403032
    [4]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [5]YIN Leyi, HUANG Guoxin, NIU Haobo, CHEN Jian, XIE Yueqing, YANG Lihu, LIU Ling. GROUNDWATER POLLUTION DYNAMIC RISK ASSESSMENT BASED ON NUMERICAL SIMULATION AND RISK SCREENING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 199-205. doi: 10.13205/j.hjgc.202401026
    [6]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [7]WANG Cheng, CHENG Jian, NIU Haobo, GONG Zhiqiang. DETERMINATION OF GROUNDWATER RISK CONTROL VALUE OF A POLLUTED LAND BASED ON NUMERICAL SIMULATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 159-164. doi: 10.13205/j.hjgc.202211022
    [8]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [9]JIA Chao, YANG Xiao, LIU Sen, WANG Song-tao, WANG Hui-hui, LIU Jian-zhang. ENVIRONMENTAL IMPACT OF LANDFILL ON GROUNDWATER QUALITY BASED ON INDEX ANALYSIS AND GIS METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 156-163,155. doi: 10.13205/j.hjgc.202104024
    [10]ZHAO Yan, GUO Jia-lin, SHI Yang, WU Zhi-qi, JIANG Bin-hui. A GROUNDWATER INFLOW PREDICTION METHOD FOR FUSHUN WEST OPEN-PIT MINE BASED ON GMS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 75-79,129. doi: 10.13205/j.hjgc.202101011
    [11]ZHOU Chuan, WU Qi-rong, YU Jiang-tao, QIN Fu-chu. NUMERICAL SIMULATION FOR FGD WASTEWATER EVAPORATION IN THE FLUE DUCT OF A 2×350 MW COAL-FIRED UNIT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 96-101. doi: 10.13205/j.hjgc.202005017
    [12]SHEN Li. PREDICTION OF DUST MOVEMENT LAW IN COAL-FIRED POWER PLANTS BASED ON GAS-PARTICLE TWO-PHASE FLOW MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 181-187,93. doi: 10.13205/j.hjgc.202006030
    [13]CHEN Wen-hao, XU Guo-hui, ZHANG Yan-yan. LAYOUT OPTIMIZATION OF PUMPING AND INJECTION WELLS FOR LEACHING RESTORATION IN ENCLOSED CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 211-217. doi: 10.13205/j.hjgc.202011034
    [14]QU Guang-fei, AN Zhi, NING Ping, XIE Ruo-song. GENERAL SURVEY ON APPLICATION OF NUMERICAL SIMULATION IN SEWAGE BIOLOGICAL TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 99-104,179. doi: 10.13205/j.hjgc.202003017
    [19]Ding Zhijiang Lu Mingyuan Xiao Lichun, . NUMERICAL SIMULATION METHOD OF GAS FLOW DISTRIBUTION IN ELECTROSTATIC PRECIPITATOR FOR CONVERTER GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 92-96. doi: 10.13205/j.hjgc.201504019
    [20]Mao Rui, Liu Genfan, Deng Xiang, Fan Ning. NUMERICAL SIMULATION STUDY ON STRUCTURAL DEVELOPMENT OF BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 77-81. doi: 10.13205/j.hjgc.201503016
  • Cited by

    Periodical cited type(4)

    1. 南瑞川,柏晓鹏,张婷婷,闫晓惠. 镍污染场地抽出-处理数值模拟及渗透系数对修复效果影响. 大连理工大学学报. 2025(01): 97-104 .
    2. 陈帆,史浙明,贾永锋,臧永歌,廉新颖,姜永海,冉泽宇,尚长健. 场地污染地下水抽出处理系统井群加权优化方法研究. 水文地质工程地质. 2024(01): 201-214 .
    3. 宁阁,苏冬阳,高春杰,苏澳,卢德喜. 超采区浅层地下水数值模拟及预测分析. 中国水利水电科学研究院学报(中英文). 2024(03): 283-297 .
    4. 郑廷雨,姚元,刘睿,叶渊,朱焰,刘玉涛,宋坦坦. 地下水污染场地异位修复及阻隔防控联合治理模式. 有色金属(冶炼部分). 2024(12): 109-118 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.5 %FULLTEXT: 9.5 %META: 88.1 %META: 88.1 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.8 %其他: 19.8 %其他: 0.8 %其他: 0.8 %上海: 2.4 %上海: 2.4 %保定: 0.8 %保定: 0.8 %凉山: 1.6 %凉山: 1.6 %南京: 1.6 %南京: 1.6 %台州: 0.8 %台州: 0.8 %嘉兴: 0.8 %嘉兴: 0.8 %大同: 1.6 %大同: 1.6 %常德: 1.6 %常德: 1.6 %广州: 1.6 %广州: 1.6 %张家口: 4.0 %张家口: 4.0 %成都: 6.3 %成都: 6.3 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %江门: 0.8 %江门: 0.8 %漯河: 2.4 %漯河: 2.4 %石家庄: 1.6 %石家庄: 1.6 %芒廷维尤: 26.2 %芒廷维尤: 26.2 %芝加哥: 2.4 %芝加哥: 2.4 %衢州: 2.4 %衢州: 2.4 %西宁: 9.5 %西宁: 9.5 %贵阳: 2.4 %贵阳: 2.4 %运城: 4.8 %运城: 4.8 %遵义: 0.8 %遵义: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 0.8 %重庆: 0.8 %其他其他上海保定凉山南京台州嘉兴大同常德广州张家口成都昆明晋城江门漯河石家庄芒廷维尤芝加哥衢州西宁贵阳运城遵义郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (107) PDF downloads(5) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return