Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YUAN Wei-hao, WANG Hua, ZENG Yi-chuan, FANG Shao-wen, WANG Shi-gang, LI Yuan-yuan, ZHANG Xin-yue. SPATIOTEMPORAL VARIATION OF DRIVING FACTORS OF ALGAL PROLIFERATION IN A LARGE RIVER-CONNECTED LAKE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 64-71,128. doi: 10.13205/j.hjgc.202110009
Citation: YUAN Hongchun, ZANG Tianqi. DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 214-221. doi: 10.13205/j.hjgc.202307029

DETECTION OF UNDERWATER TRASH BASED ON Ghost-YOLOv5 AND ATTENTION MECHANISM

doi: 10.13205/j.hjgc.202307029
  • Received Date: 2022-05-15
  • Underwater trash detection technology is of great significance for automatic trash removal tasks by underwater robots. However, it faces some challenges, such as an unsatisfactory detection rate due to poor underwater light conditions and high computation load. To solve these problems, this paper proposed an improved YOLOv5 model for underwater trash detection. First, in the preprocessing stage, Gamma transform was introduced to improve the grey level and contrast of underwater images for model detection. Meanwhile, the CBAM attention mechanism was embedded in the detection part of the YOLOv5 model to select the information important to underwater trash detection tasks and suppress uncritical information, thus improving the accuracy of the algorithm. Besides, in the neck layer, the traditional convolution module was replaced by the Ghost convolution module to reduce the calculation amount and improve the detection speed. The proposed model was evaluated on an underwater trash dataset in the real environment. Compared with mainstream object detection algorithms, the proposed model achieved the highest detection accuracy of 93.7% in images with a resolution of 640×640, and the calculation time was only 6.7 ms, meeting the requirements of real-time performance. The study results provide a good reference for underwater trash detection.
  • [1]
    DERRAIK J G B.The pollution of the marine environment by plastic debris:a review[J].Marine pollution bulletin, 2002, 44(9):842-852.
    [2]
    National oceanic and atmospheric administration.What is marine debris?[EB/OL].[2018-10-02].https://oceanservice.noaa.gov/facts/marinedebris.html.
    [3]
    VALAVANIDIS A, VLACHOGIANNI T.Marine litter:man-made solid waste pollution in the Mediterranean Sea and coastline.Abundance, composition and sources identification[J].Science Advances on Environmental Chemistry, Toxicology and Ecotoxicology, 2012, 1:1-18.
    [4]
    LANDRIGAN P J, STEGEMAN J J, FLEMING L E, et al.Human health and ocean pollution[J].Annals of global health, 2020, 86(1):1-64.
    [5]
    RODINELIUSSEN R.Caring for water:underwater waste, trash diving, and publicity in stockholm[J].kritisk etnografi:Swedish Journal of Anthropology, 2021, 4(2):73-92.
    [6]
    WU Y C, SHIH P Y, CHEN L P, et al.Towards underwater sustainability using ROV equipped with deep learning system[C]//2020 International Automatic Control Conference (CACS), IEEE, 2020:1-5.
    [7]
    FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al.Object detection with discriminatively trained part-based models[J].IEEE transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9):1627-1645.
    [8]
    LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110.
    [9]
    DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), Ieee, 2005, 1:886-893.
    [10]
    PLATT J C.Sequential minimal optimization:a fast algorithm for training support vector machines[J].Microsoft Research, 1998,98(14):208.
    [11]
    HIPOLITO J C, ALON A S, AMORADO R V, et al.Detection of underwater marine plastic debris using an augmented low sample size dataset for machine vision system:a deep transfer learning approach[C]//2021 IEEE 19th Student Conference on Research and Development (SCOReD), IEEE, 2021:82-86.
    [12]
    GIRSHICK R, Donahue J, Darrell T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Beijing,China,IEEE,2014:580-587.
    [13]
    GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, Chongqing,China,IEEE,2015:1440-1448.
    [14]
    LIU W, ANGUELOV D, ERHAN D, et al.Ssd:Single shot multibox detector[C]//European Conference on Computer Vision, Springer, Cham, 2016:21-37.
    [15]
    REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems, 2017, 36(9):1137-1149.
    [16]
    REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
    [17]
    MACE T H.At-sea detection of marine debris:overview of technologies, processes, issues, and options[J].Marine Pollution Bulletin, 2012, 65(1/2/3):23-27.
    [18]
    MATIAS V.Submerged marine debris detection with autonomous underwater vehicles[C]//2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), IEEE, 2016:1-7.
    [19]
    FULTON M, HONG J, Islam M J, et al.Robotic detection of marine litter using deep visual detection models[C]//2019 International Conference on Robotics and Automation (ICRA), IEEE, 2019:5752-5758.
    [20]
    FULTON M, HONG J, SATTAR J.Trash-icra19:a bounding box labeled dat aset of unde rwa ter trash[J].Data Repository for the University of Minnesota, 2020,10:132.
    [21]
    ARKIN E, YADIKAR N, MUHTAR Y, et al.A survey of object detection based on CNN and transformer[C]//2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML), IEEE, 2021:99-108.
    [22]
    HU K, WENG C H, ZHANG Y W, et al.An overview of underwater vision enhancement:from traditional methods to recent deep learning[J].Journal of Marine Science and Engineering, 2022, 10(2):241.
    [23]
    HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattem Recogrition, New York:IEEE Press,2018:7132-7141.
    [24]
    WOO S, PARK J, LEE J Y, et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision,Munich, Germany,ECCV,2018:3-19.
    [25]
    HAN K, WANG Y, TIAN Q, et al.Ghostnet:More features from cheap operations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Guangxi, China,IEEE,2020:1580-1589.
    [26]
    HONG J, FULTON M, SATTAR J.TrashCan:A semantically-segmented dataset towards visual detection of marine Debris[J].2020.DOI: 1048550/arXiv.2007.08097.
    [27]
    GE Z, LIU S, WANG F, et al.YOLOX:Exceeding YOLO Series in 2021[J].2021.DOI: 10.48550/arXiv:2107.08430.
  • Relative Articles

    [1]DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017
    [2]HU Xiaomin, JIANG Shuqi. TREATMENT OF EMULSIFIED OIL WASTEWATER BY PULSE ELECTRIC FIELD DEMULSIFICATION-ACTIVATED PERSULFATE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 55-62. doi: 10.13205/j.hjgc.202401008
    [3]SHI En, ZHANG Shuai, ZHANG Miao, LIU Shasha, ZOU Yuliang, ZHANG Xiangzhi. ENVIRONMENTAL IMPACT ASSESSMENT OF SLUDGE-BASED ACTIVATED CARBON PREPARATION PROCESS BASED ON LIFE CYCLE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 40-47. doi: 10.13205/j.hjgc.202402005
    [4]REN Yuqing, WU Wei, WEI Haijuan, ZHOU Bin, XING Yunxin, HE Kankan, ZHOU Zhen. EFFECTS OF PROPERTIES AND STRUCTURE OF POLYACRYLAMIDE ON SLUDGES CONDITIONING AND DEWATERING PERFORMANCE BEFORE AND AFTER ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 57-64. doi: 10.13205/j.hjgc.202308008
    [5]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [6]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [7]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [8]WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
    [9]ZOU Zhikun, CHEN Yudao, ZHENG Gao, LU Renqian, YANG Pengfei, WU Weizhong. EFFECTS OF ETHANOL ON REMOVAL OF BTEX FROM GASOLINE BY PERSULFATE IN LIMESTONE AQUEOUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 98-104. doi: 10.13205/j.hjgc.202212013
    [10]XIE Min, WU Xin, WANG Xiao, XU Su, XIAO Ben-yi, GUO Xue-song. OPTIMIZATION ON EXCESS SLUDGE DEWATERING OF RURAL DISPERSED WASTEWATER TREATMENT FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 15-20. doi: 10.13205/j.hjgc.202106003
    [11]YAN Qiu-he, WANG Hong-tao, LIU Yan-ting. EVALUATION OF CLASSIFICATION EFFECT OF KITCHEN WASTE AND OTHER WASTE AND ENERGY UTILIZATION EFFICIENCY USING MOISTURE CONTENT: A CASE STUDY OF ZHANGJIAGANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 105-109,159. doi: 10.13205/j.hjgc.202102016
    [12]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [13]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [14]LIAN Guang-hu, CHENG Gang, ZHANG Lin-yu, ZHANG Yu, SONG Zhi-jun, XU Xiao-jie, WEN Yu-ting, CAI Mei-qiang. SLUDGE DEWATERING PERFORMANCE ENHANCEMENT BY HYDRODYNAMIC CAVITATION-ACIDIFICATION CONDITIONING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 96-100,70. doi: 10.13205/j.hjgc.202008016
    [15]LAN Bing-bing, JIN Ruo-fei, LIU Yan-song, LIU Guang-fei, ZHOU Ji-ti. EFFECT OF SODIUM PERIODATE-APAM CONJUNCTION ON DEWATERABILITY OF WASTE ACTIVATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 122-126. doi: 10.13205/j.hjgc.202007019
    [16]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [17]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
    [18]CHEN Wei-gang, WU Hai-xia, FAN Jia-wei. ACTIVATED CARBON HETEROGENEOUS ACTIVATION OF DIFFERENT PERSULFATES TO DEGRADATION AZO DYE ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 113-118,57. doi: 10.13205/j.hjgc.202008019
    [19]GUO Zhao-qiang, SHANG Shuang, LAN Kui, LI Ze-shan, XIONG Tao, ZHANG Juan-juan, WANG Yan, QIN Zhen-hua, LI Jian-fen. HYDROGEN-RICH SYNGAS PRODUCTION BY CO-PYROLYSIS OF WHEAT STALK AND WET SEWAGE SLUDGE WITH DIFFERENT MOISTURE CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 160-164,214. doi: 10.13205/j.hjgc.202005028
    [20]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
  • Cited by

    Periodical cited type(6)

    1. 黎栩霞,王裕东,肖佑鹏,徐旭,王海鹏,陈伊梦,林俊川,黄桂松,黄振国,孙萍,麦有全,杨尚波,许旺. 深圳近岸海域水质遥感监测及时空变化. 环境工程. 2024(01): 243-252 . 本站查看
    2. 胡芳,刘聚涛,杨平,温春云,张兰婷,张洁. 鄱阳湖蓝藻时空分布特征及其驱动因子研究. 长江流域资源与环境. 2024(03): 605-614 .
    3. 钱春龙,曾一川,袁伟皓,吴怡. 基于时间序列的鄱阳湖Chl-a预测模型优化构建. 长江科学院院报. 2023(10): 14-21 .
    4. 任永琴,金柱成,俞真元,王晓丽,彭士涛. 基于双向门控循环单元的地表水氨氮预测. 中国环境科学. 2022(02): 672-679 .
    5. 朱江伟,马鹏飞,杜晓,杨言言,郝晓刚,罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离. 化工学报. 2022(07): 3057-3067 .
    6. 张天衍,董增川,罗赟,石晴宜,韩亚雷,崔璨,周强,张游. 基于水质-水位二元响应关系推求过水型湖泊适宜生态水位研究. 湖泊科学. 2022(05): 1670-1682 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.5 %FULLTEXT: 8.5 %META: 85.5 %META: 85.5 %PDF: 6.0 %PDF: 6.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.3 %其他: 0.3 %上海: 1.6 %上海: 1.6 %上饶: 0.5 %上饶: 0.5 %东京: 0.3 %东京: 0.3 %东莞: 0.3 %东莞: 0.3 %临汾: 0.5 %临汾: 0.5 %保定: 0.3 %保定: 0.3 %兰州: 1.1 %兰州: 1.1 %北京: 13.2 %北京: 13.2 %南京: 3.5 %南京: 3.5 %南宁: 0.3 %南宁: 0.3 %南昌: 1.1 %南昌: 1.1 %台州: 1.1 %台州: 1.1 %吉林: 0.5 %吉林: 0.5 %呼和浩特: 0.3 %呼和浩特: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 2.2 %嘉兴: 2.2 %大同: 0.5 %大同: 0.5 %天津: 2.7 %天津: 2.7 %安康: 0.5 %安康: 0.5 %常州: 0.3 %常州: 0.3 %常德: 0.5 %常德: 0.5 %广州: 1.9 %广州: 1.9 %庆阳: 1.6 %庆阳: 1.6 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 1.9 %张家口: 1.9 %德阳: 0.3 %德阳: 0.3 %成都: 2.7 %成都: 2.7 %扬州: 0.8 %扬州: 0.8 %新乡: 0.5 %新乡: 0.5 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 4.9 %武汉: 4.9 %江门: 0.3 %江门: 0.3 %洛阳: 0.3 %洛阳: 0.3 %海口: 0.3 %海口: 0.3 %深圳: 0.8 %深圳: 0.8 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.4 %漯河: 1.4 %烟台: 0.3 %烟台: 0.3 %盐城: 0.5 %盐城: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.5 %福州: 0.5 %芒廷维尤: 7.3 %芒廷维尤: 7.3 %芝加哥: 1.4 %芝加哥: 1.4 %菏泽: 0.8 %菏泽: 0.8 %蚌埠: 2.2 %蚌埠: 2.2 %衡水: 1.6 %衡水: 1.6 %衢州: 0.5 %衢州: 0.5 %西宁: 6.8 %西宁: 6.8 %西安: 0.3 %西安: 0.3 %贵港: 0.8 %贵港: 0.8 %贵阳: 1.1 %贵阳: 1.1 %资阳: 0.5 %资阳: 0.5 %运城: 1.9 %运城: 1.9 %通辽: 1.4 %通辽: 1.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %龙岩: 1.6 %龙岩: 1.6 %其他其他上海上饶东京东莞临汾保定兰州北京南京南宁南昌台州吉林呼和浩特唐山嘉兴大同天津安康常州常德广州庆阳弗吉尼亚州张家口德阳成都扬州新乡无锡昆明晋城杭州武汉江门洛阳海口深圳温州湖州漯河烟台盐城石家庄福州芒廷维尤芝加哥菏泽蚌埠衡水衢州西宁西安贵港贵阳资阳运城通辽遵义邯郸郑州重庆长沙龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (221) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return