Citation: | FENG Tugen, ZHENG Liuqin, ZHANG Jian, WEI Yang. A NEW RISK ASSESSMENT METHOD FOR HEAVY METAL ORGANIC COMPOUND POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 222-228. doi: 10.13205/j.hjgc.202307030 |
[1] |
陈江军, 刘波, 蔡烈刚, 等.基于多种方法的土壤重金属污染风险评价对比:以江汉平原典型场区为例[J].水文地质工程地质, 2018,45(6):164-172.
|
[2] |
范拴喜, 甘卓亭, 李美娟, 等.土壤重金属污染评价方法进展[J].中国农学通报, 2010,26(17):310-315.
|
[3] |
郭欣, 姚苹, 杜焰玲, 等.典型土地利用方式下土壤重金属污染物分布特征与源解析:以成都平原干溪河流域为例[J].环境工程, 2019,37(1):1-5.
|
[4] |
HAKANSON L.An ecological risk index for aquatic pollution control.a sedimentological approach[J].Water Research, 1980,14(8):975-1001.
|
[5] |
王大鹏, 王诚煜, 于成广, 等.葫芦岛东北部土壤重金属分布特征及来源解析[J].中国环境科学.2021,41(11):5227-5236.
|
[6] |
窦韦强, 安毅, 秦莉, 等.农田土壤重金属垂直分布迁移特征及生态风险评价[J].环境工程, 2021,39(2):166-172.
|
[7] |
刘清, 王子健, 汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学, 1996,17(1):89-92.
|
[8] |
GHAYORANEH M, QISHLAQI A.Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran[J].Journal of Geochemical Exploration, 2017,180:1-14.
|
[9] |
GOLDBERG E.Determination of opal in marine[J].Journal of Marine Research, 1958,17:178-182.
|
[10] |
LI H X, JI H B, CUI X L, et al.Kinetics, thermodynamics, and equilibrium of As(Ⅲ), Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) adsorption using porous chitosan bead-supported MnFe2O4 nanoparticles[J].International Journal of Mining Science and Technology, 2021,31(6):1107-1115.
|
[11] |
李国臣, 李泽琴, 高岚.土壤重金属生物可利用性的研究进展[J].土壤通报, 2012,43(6):1527-1531.
|
[12] |
孙艺伦, 张婧然, 朱丹丹, 等.柠檬酸对MFC修复土壤的促进作用[J].中南大学学报(自然科学版), 2021,52(10):3397-3404.
|
[13] |
LI G H, LI M, ZHANG X, et al.Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal[J].International Journal of Mining Science and Technology, 2022,32(3):563-573.
|
[14] |
唐巾尧, 王云燕, 徐慧, 等.铜冶炼多源固废资源环境属性的解析[J].中南大学学报(自然科学版), 2022,53(10):3811-3826.
|
[15] |
任丽敏, 何江, 吕昌伟, 等.达里诺尔湖生物有效态重金属的形态分布及生态风险评价[J].农业环境科学学报, 2013,32(2):338-346.
|
[16] |
杨梦丽, 叶明亮, 马友华, 等.基于重金属有效态的农田土壤重金属污染评价研究[J].环境监测管理与技术, 2019,31(1):10-13
,38.
|
[17] |
李燕, 魏雨露, 夏龙飞.便携式X荧光光谱仪在场地重金属污染调查中的应用研究:《环境工程》2019年全国学术年会[C]//中国北京, 2019.
|
[18] |
冉景, 王德建, 王灿, 等.便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J].光谱学与光谱分析, 2014,34(11):3113-3118.
|
[19] |
廖启林, 刘聪, 许艳, 等.江苏省土壤元素地球化学基准值[J].中国地质, 2011,38(5):1363-1378.
|
[20] |
窦智勇, 程建华, 周平, 等.基于总量及有效态的铜陵矿区农田土壤重金属生态风险评价[J].环境污染与防治, 2015,37(11):6-10.
|
[21] |
高怀友, 师荣光, 赵玉杰.不同土壤中Zn有效态含量与全量关系的统计研究[J].环境科学学报, 2006,26(8):1400-1403.
|
[22] |
GAO H Y, SHI R G, ZHAO Y J.Statistical relationship between bio-available Zn and total Zn concentration in soil under non-continous spatio-temporal condition[J].Acta Scientiae Circumstantiae, 2006,26(8):1400-1403.
|
[23] |
赵小学, 姚东平, 成永霞, 等.铅冶炼区土壤重金属总量和有效态含量的函数分析[J].中国环境监测, 2017,33(1):68-74.
|
[24] |
丁琮, 陈志良, 李核, 等.长株潭地区农业土壤重金属全量与有效态含量的相关分析[J].生态环境学报, 2012,21(12):2002-2006.
|
[25] |
SINGH K P, MOHAN D, SINGH V K, et al.Studies on distribution and fractionation of heavy metals in Gomti river sediments:a tributary of the Ganges, India[J].Journal of Hydrology, 2005,312(1/2/3/4):14-27.
|
[26] |
范明毅, 杨皓, 黄先飞, 等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学, 2016,36(8):2425-2436.
|
[27] |
宋伟, 陈百明, 刘琳.中国耕地土壤重金属污染概况[J].水土保持研究, 2013,20(2):293-298.
|
[28] |
OLSSON M.Mercury, DDT, and PCB in aquatic test organisms:baseline and monitoring studies, field studies on biomagnification, metabolism, and effects of some bioaccumulating substances harmful to the Swedish environment[M].Swedish Museum of Natural History, Section for Vertebrate Zoology, 1977:139.
|
[29] |
徐争启, 倪师军, 庹先国, 等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术.2008,31(2):112-115.
|
[30] |
丰土根, 郑柳钦, 张箭, 等.废弃农药厂重金属污染土风险评价及焙烧修复效果研究[J].环境工程, 2022,40(2):132-138.
|
[31] |
孙彤, 纪艺凝, 李可, 等.弱碱性玉米地土壤重金属赋存形态及生态风险评价[J].环境化学, 2020,39(9):2469-2478.
|
[32] |
李军, 刘云国, 许中坚.湘江长株潭段底泥重金属存在形态及生物有效性[J].湖南科技大学学报(自然科学版), 2009,24(1):116-121.
|
[33] |
聂海峰, 赵传冬, 刘应汉, 等.松花江流域河流沉积物中多氯联苯的分布、来源及风险评价[J].环境科学, 2012,33(10):3434-3442.
|
[34] |
ZHU H N, YUAN X Z, ZENG G M, et al.Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index[J].Transactions of Nonferrous Metals Society of China, 2012,22(6):1470-1477.
|
[1] | LI Wei, HU Haoting, LIU Ning, YE Youlin, GAO Mingjie, FENG Qing. ADSORPTION PERFORMANCE OF TC AND Cu2+ BY METAL-ORGANIC SKELETON HYBRID FOAMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 25-34. doi: 10.13205/j.hjgc.202406004 |
[2] | ZHU Qinlin, YANG Yinchuan, QIN Weiye, XU Yazhou, CHEN Jiabin, ZHOU Xuefei, ZHANG Yalei. RESEARCH PROGRESS OF METAL-ORGANIC FRAMEWORKS MEMBRANES FOR HIGH SALINITY WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 239-247. doi: 10.13205/j.hjgc.202306031 |
[3] | PAN Xuemei, QIU Fangfang, WANG Qinyuan, CHEN Jincheng, ZHANG Ping. TOXICITY EFFECT OF ORGANIC MODIFIED LAYERED DOUBLE HYDROXIDE COMBINED WITH METHYL ORANGE ON CHLORELLA VULGARIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 26-34. doi: 10.13205/j.hjgc.202301004 |
[4] | DING Fuge, GUO Yuxiang, YUAN Daying, ZHANG Bixian, ZHU Jing, XU Yiqun, HU Qingsong. CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010 |
[5] | FENG Chao, XIONG Gaoyan, WANG Yunxia, PAN Yuan, LIU Yunqi. SYNTHESIS OF CuO-Cu1.5Mn1.5O4 COMPOSITE OXIDE BY USING A BIMETALLIC ORGANIC FRAMEWORK FOR CATALYTIC PROPANE TOTAL OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 69-77. doi: 10.13205/j.hjgc.202208009 |
[6] | ZHANG Peng, XU Ruixia, LIU Shuyi, ZHAO Ling. PREPARATION OF CuO/ZnO CATALYST DERIVED FROM MOFs AND PHOTOCATALYTIC PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 35-42. doi: 10.13205/j.hjgc.202204006 |
[7] | WANG Tong-wei, JIN Bao-sheng, WU Wei, GU Qin-yang, WANG De-cheng. HCl(g) REMOVAL PERFORMANCE OF K2CO3-MODIFIED CAMGAL MIXED METAL OXIDES DERIVED FROM HYDROTALCITE-LIKE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 102-109. doi: 10.13205/j.hjgc.202109015 |
[8] | JIANG Shu-wen, WEI Shi-cheng, WANG Ting, LU Yao-bin, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. PREPARATION OF A FENTON-LIKE Cu-Co-Fe METALLIC OXIDE CATALYST AND ITS DEGRADATION PERFORMANCE ON TYPICAL REFRACTORY ORGANICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 77-82,118. doi: 10.13205/j.hjgc.202111009 |
1. | 田伟超,陈融旭,田世民,王新,刘佳昕. 多倍体剑叶芦竹对豫西丘陵区坡面径流污染阻控效果研究. 环境工程. 2024(12): 60-65 . ![]() | |
2. | 胡海波,邓文斌,王霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展. 浙江农林大学学报. 2022(01): 214-222 . ![]() | |
3. | 周传庭,王梦玉,幸韵欣,朱峰,安莹,周振. 城市初期雨水污染及处理措施的研究进展. 净水技术. 2022(07): 17-26 . ![]() |