Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHOU Lichang, LI Zhaoling, CHEN Lei, LIN Ya'nan, GONG Zhiwei, LIN Qingshan, MA Jie, WANG Zongping, GUO Gang. SHORT-TERM EFFECT OF THIOSULFATE ON COMPETITION BETWEEN SULFUR BACTERIA AND GLYCOGEN ACCUMULATING ORGANISMS IN SULFUR-CONTAINING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 26-32. doi: 10.13205/j.hjgc.202308004
Citation: ZHOU Lichang, LI Zhaoling, CHEN Lei, LIN Ya'nan, GONG Zhiwei, LIN Qingshan, MA Jie, WANG Zongping, GUO Gang. SHORT-TERM EFFECT OF THIOSULFATE ON COMPETITION BETWEEN SULFUR BACTERIA AND GLYCOGEN ACCUMULATING ORGANISMS IN SULFUR-CONTAINING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 26-32. doi: 10.13205/j.hjgc.202308004

SHORT-TERM EFFECT OF THIOSULFATE ON COMPETITION BETWEEN SULFUR BACTERIA AND GLYCOGEN ACCUMULATING ORGANISMS IN SULFUR-CONTAINING WASTEWATER

doi: 10.13205/j.hjgc.202308004
  • Received Date: 2022-10-06
    Available Online: 2023-11-15
  • Sulfur bacteria, including sulfate-reducing bacteria and sulfur-oxidizing bacteria, as the main functional bacteria of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) process, is susceptible to the competition with glycogen accumulating organisms, resulting in fluctuations in phosphorus removal efficiency. Thiosulfate has high bioavailability and is widely used in the treatment of sulfur-containing wastewater. To explore the short-term effect of thiosulfate on the competition between sulfur bacteria and glycogen-accumulating organisms, different concentrations of thiosulfate [20 (R1), 50 (R2) and 80 mg S/L (R3)] were added to the system enriched with sulfur bacteria and glycogen accumulating organisms to monitor the changes of key ions and bacterial intracellular polymers in the reactors. The results showed that when the dosage of thiosulfate increased from 20 to 50 mg S/L, the amount of sulfate production and polysulfide degradation in the anoxic stage increased by 25% and 11%, respectively, and the amount of PHA degradation, glycogen production decreased by 1.60 and 0.94 mmol C/g VSS, respectively; when the dosage further increased to 80 mg S/L, the degradation of polysulfide of R3 decreased by 37%, and the amount of PHA degradation and glycogen production increased by 1.08 and 0.12 mmol C/g VSS, respectively, compared with that of R2. The results showed that when an appropriate amount of thiosulfate (50 mg S/L) was added, sulfur-oxidizing bacteria would preferentially utilize thiosulfate for electron donors when they competed with glycogen accumulating organisms, which was beneficial to enhancing the competitive advantage of sulfur-oxidizing bacteria. At the same time, the results of chemical reaction kinetics in the anoxic stage showed that the addition of thiosulfate could increase the sulfate production and denitrification rate of sulfur bacteria, thereby promoting the activity of sulfur bacteria. Although the addition of thiosulfate could maintain a good denitrification effect in the reactors, it did not significantly improve the phosphorus removal efficiency.
  • loading
  • [1]
    LU H,WU D,JIANG F,et al.The demonstration of a novel sulfur cycle-based wastewater treatment process:sulfate reduction,autotrophic denitrification,and nitrification integrated (SANI(R)) biological nitrogen removal process[J].Biotechnol Bioeng,2012,109(11):2778-2789.
    [2]
    GUO G,EKAMA G A,WANG Y,et al.Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment:a review[J].Bioresour Technol,2019,285:121303.
    [3]
    SUN R,LI Y,LIN N,et al.Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction:configuration,performance,critical parameters and economic analysis[J].Environ Int,2020,136:105457.
    [4]
    WANG J,LU H,CHEN G H,et al.A novel sulfate reduction,autotrophic denitrification,nitrification integrated (SANI) process for saline wastewater treatment[J].Water Res,2009,43(9):2363-2372.
    [5]
    WU D,EKAMA G A,WANG H G,et al.Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process[J].Water Res,2014,49:251-264.
    [6]
    GUO G,WU D,HAO T W,et al.Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system:an investigation by operating the system from deterioration to restoration[J].Water Res,2016,95:289-299.
    [7]
    SHEN N,ZHOU Y.Enhanced biological phosphorus removal with different carbon sources[J].Appl Microbiol Biotechnol,2016,100(11):4735-4745.
    [8]
    ZHENG X L,SUN P D,HAN J Y,et al.Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR):a mini-review[J].Process Biochemistry,2014,49(12):2207-2213.
    [9]
    OEHMEN A,VIVES M T,LU H B,et al.The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms[J].Water Res,2005,39(15):3727-3737.
    [10]
    LOPEZ-VAZQUEZ C M,OEHMEN A,HOOIJMANS C M,et al.Modeling the PAO-GAO competition:effects of carbon source,pH and temperature[J].Water Res,2009,43(2):450-462.
    [11]
    QIAN J,LU H,CUI Y X,et al.Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process[J].Water Res,2015,69:295-306.
    [12]
    QIAN J,BAI L Q,ZHANG M K,et al.Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system[J].Water Res,2021,190:116716.
    [13]
    ZHANG C,GUO J B,LIAN J,et al.Characteristics of electron transport chain and affecting factors for thiosulfate-driven perchlorate reduction[J].Chemosphere,2017,185:539-547.
    [14]
    WU D,EKAMA G A,LU H,et al.A new biological phosphorus removal process in association with sulfur cycle[J].Water Res,2013,47(9):3057-3069.
    [15]
    SMOLDERS G J F,VAN DER MEIJ J,VAN LOOSDRECHT M C M,et al.Model of the anaerobic metabolism of the biological phosphorus removal process:stoichiometry and pH influence[J].Biotechnol Bioeng,1994,43(6):461-470.
    [16]
    陈磊,林亚楠,冯志,等.单质硫冲击对含硫废水中硫细菌与聚糖菌竞争关系的影响[J].环境工程学报,2021,15(12):4018-4027.
    [17]
    国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [18]
    OEHMEN A,KELLER-LEHMANN B,ZENG R J,et al.Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J].J Chromatogr A,2005,1070(1/2):131-136.
    [19]
    JENKINS D,RICHARD M G,DAIGGER G T.Manual on the causes and control of activated sludge bulking,foaming,and other solids separation problems[M].Boca Raton:CRC Press,2003.
    [20]
    JIANG G,SHARMA K R,GUISASOLA A,et al.Sulfur transformation in rising main sewers receiving nitrate dosage[J].Water Res,2009,43(17):4430-4440.
    [21]
    张宇浩,李晓玲,陈莹,等.C/S对生物氮转移途径的影响[J].环境工程,2019,37(12):6-11.
    [22]
    RUBIO-RINCON F J,WELLES L,LOPEZ-VAZQUEZ C M,et al.Long-term effects of sulphide on the enhanced biological removal of phosphorus:the symbiotic role of Thiothrix caldifontis[J].Water Res,2017,116:53-64.
    [23]
    杨艳平,赵辰,张纯纯,等.聚糖菌快速富集方法的建立及群落特性分析[J].环境工程学报,2021,15(5):1792-1802.
    [24]
    WANG Y,GUO G,WANG H,et al.Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems[J].Water Res,2013,47(14):5326-5337.
    [25]
    黄筹,王燕,郑凯凯,等.城镇污水处理厂除磷影响因素及优化运行研究[J].环境工程,2020,38(7):58-65.
    [26]
    HAO T,LIN Q,MA J,et al.Microbial behaviours inside alternating anaerobic-anoxic environment of a sulfur cycle-driven EBPR system:a metagenomic investigation[J].Environ Res,2022,212(Pt C):113373.
    [27]
    CARVALHO G,LEMOS P C,OEHMEN A,et al.Denitrifying phosphorus removal:linking the process performance with the microbial community structure[J].Water Res,2007,41(19):4383-4396.
    [28]
    冯鑫,赵剑强,代伟,等.亚硝酸盐反硝化聚磷过程中NO和N2O的累积特征[J].环境工程,2019,37(12):1-5

    ,54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (135) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return