Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DING Fuge, GUO Yuxiang, YUAN Daying, ZHANG Bixian, ZHU Jing, XU Yiqun, HU Qingsong. CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010
Citation: DING Fuge, GUO Yuxiang, YUAN Daying, ZHANG Bixian, ZHU Jing, XU Yiqun, HU Qingsong. CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010

CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ

doi: 10.13205/j.hjgc.202308010
  • Received Date: 2022-08-25
    Available Online: 2023-11-15
  • To solve the increasingly serious environmental contamination, it is urgent to develop novel and highly efficient technologies for remedying environmental pollution. Photocatalytic oxidation can convert solar energy into chemical energy, which provides a promising method for contaminant removal. In this work, β-FeOOH and TiO2 are compounded via the impregnation-ultrasonic-calcination method. And β-FeOOH/TiO2 composite catalysts with different weight ratios were obtained. The composition and microstructure were studied by X-ray powder diffractor (XRD), transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS) and infrared spectrometer (FT-IR). And the tight interface contact between β-FeOOH and TiO2 was observed via TEM analysis. The photocatalytic degradation of acid orange Ⅱ (AOⅡ) was evaluated with the addition of H2O2 under the irradiation of simulated sunlight. And the degradation mechanism was explored in detail. The experimental results demonstrated that the highest degradation efficiency was achieved, when the weight ratio of β-FeOOH and TiO2 was 3∶1, the initial pH value was around 3.05, and the concentration of H2O2 was 20 mmol/L. Moreover, radical quenching experiments and electron spin resonance (ESR) analysis result indicated that hydroxyl radical (·OH) and superoxide radical (O2·-) act the key roles in the degradation process of acid orange Ⅱ. This research can provide new thoughts on the remediation of dyeing wastewater.
  • [1]
    陈卫刚,武海霞,樊佳炜.活性炭非均相活化不同过硫酸盐降解偶氮染料酸性橙Ⅱ[J].环境工程,2020,38(8):113-119.
    [2]
    陈作云.旅客列车集便器废水中抗生素的光芬顿催化降解分析[J].环境工程,2020,38(10):128-133.
    [3]
    LI X,YU J G,JARONIEC M.Hierarchical photocatalysts[J].Chemical Society Reviews,2016,45:2603-2636.
    [4]
    CHOWDHURY M,NTIRIBINYANGE M,NYAMAYARO K,et al.Photocatalytic activities of ultra-small β-FeOOH and TiO2 heterojunction structure under simulated solar irradiation[J].Materials Research Bulletin,2015,68:133-141.
    [5]
    HE S A,LI W,WANG X,et al.High-efficient precious-metal-free g-C3N4-Fe3O4/beta-FeOOH photocatalyst based on double-heterojunction for visible-light-driven hydrogen evolution[J].Applied Surface Science,2020,506:144948.
    [6]
    WEN Y,WANG Z W,CAI Y H,et al.S-scheme BiVO4/CQDs/beta-FeOOH photocatalyst for efficient degradation of ofloxacin:reactive oxygen species transformation mechanism insight[J].Chemosphere,2022,295:133784.
    [7]
    YOON Y,KATSUMATA K,SUZUKI N,et al.Rod-shaped beta-FeOOH synthesis for hydrogen production under light irradiation[J].ACS Omega,2021,6:30562-30568.
    [8]
    ZHENG Y,ZHANG Z S,LI C H,et al.Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst[J].Journal of Molecular Catalysis A:Chemical,2016,423:463-471.
    [9]
    HONDA K,FUJISHIMA A.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
    [10]
    范云芳.石墨烯负载羟基氧化铁吸附水中氟的研究[D].上海:华东师范大学,2016,51-53.
    [11]
    KOLENKA Y V,CHURAGULOV B R,KUNST M,et al.Photocatalytic properties of titania powders prepared by hydrothermal method[J].Applied Catalysis B:Environmental,2004,54:51-58.
    [12]
    FAN Y F,FU D D,ZHOU S Q,et al.Facile synthesis of goethite anchored regenerated grapheme oxide nanocomposite and its application in the removal of fluoride from drinking[J].Desalination and Water Treatment,2016,57:28393-28404.
    [13]
    ZENG Y,LUO X,LI F,et al.Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with visible-NIR light[J].Environmental Science & Technology,2021,55:7711-7720.
    [14]
    WANG Z H,JIANG T S,DU Y M,et al.Synthesis of mesoporous titania and the photocatalytic activity for decomposition of methyl orange[J].Materials Letters,2006,60:2493-2496.
    [15]
    LI J X,XU J H,DAI W L,et al.Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity[J].Applied Catalysis B:Environmental,2009,85:162-170.
    [16]
    HU Q S,DI J,WANG B,et al.In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity[J].Applied Surface Science,2019,466:525-534.
    [17]
    ZHENG Z,WANG G H,LI W B,et al.Photocatalytic activity of magnetic nano-beta-FeOOH/Fe3O4/biochar composites for the enhanced degradation of methyl orange under visible light[J].Nanomaterials,2021,11:526.
    [18]
    HU Q S,DONG J T,CHEN Y,et al.In-situ construction of bifunctional MIL-125(Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants[J].Applied Surface Science,2022,583:152423.
    [19]
    LI R B,CAI M X,XIE Z J,et al.Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation[J].Applied Catalysis B:Environmental,2019,244:974-982.
    [20]
    HU J S,ZHANG P F,AN W J,et al.In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J].Applied Catalysis B:Environmental,2019,245,130-142.
    [21]
    CAI C,ZHANG Z Y,LIU J,et al.Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange Ⅱ in water[J].Applied Catalysis B:Environmental,2016,182:456-468.
    [22]
    ZHANG Z B,ZHUANG J,GAO L Z,et al.Decomposing phenol by the hidden talent of ferromagnetic nanoparticles[J].Chemosphere,2008,73:1524-1528.
    [23]
    ZHOU Y,LIU F S,YU S T,Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite[J].Applied Surface Science,2015,355:861-867.
    [24]
    BHACHU D S,EGDELL R G,SANKER G,et al.Electronic properties of antimony-doped anatase TiO2 thin films prepared by aerosol assisted chemical vapour deposition[J].Journal of Materials Chemistry C,2017,5:9694-9701.
    [25]
    胡庆松.卤氧铋复合催化剂构建及其增强光催化去除水中污染物研究[D].上海:华东师范大学,2020,35-38.
    [26]
    朱永法,姚文清,宗瑞隆.光催化-环境净化与绿色能源应用探索[M].北京:化学工业出版社,2014:9-12.
    [27]
    张凯杰,冯骞,商卫纯,等.壳聚糖-银/二氧化钛核壳复合小球的制备及其对布洛芬的降解性能[J].环境工程,2022,40(7):9-17.
    [28]
    张鹏,徐瑞霞,刘舒怡,等.MOFs衍生CuO/ZnO催化剂的制备及其光催化性能的研究[J].环境工程,2022,40(4):35-42.
    [29]
    DESIPIO M M,BRAMER S E V,THORPE R,et al.Photocatalytic and photo-fenton activity of iron oxide-doped carbon nitride in 3D printed and LED driven photon concentrator[J].Journal of Hazardous Materials,2019,376:178-187.
  • Relative Articles

    [1]FEI Tingting, DING Xiaoting, QUE Xiang, LIN Jin, LIN Jian, WANG Ziwei, LIU Jinfu. SPATIOTEMPORAL HETEROGENEITY ANALYSIS OF ENERGY CARBON EMISSION EFFICIENCY IN CHINA BASED ON SBM-DEA AND STWR MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 188-200. doi: 10.13205/j.hjgc.202410022
    [2]ZHENG Haitao, LIU Jianguo, LUO Tao, CHENG Xueling, TAO Bangyi, LIU Cheng, HUANG Kan, SONG Xiaoquan, SHAO Shiyong, CAO Nianwen, XIANG Yan, ZHANG Tianshu, CHEN Bing, LIU Nana, JIN Xiang, LONG Wenrui, LIU Jiaxin, LI Qilong, MA Yubin, WU Lin, JIN Jiangbo, XU Manman, XU Ziqiang, WU Xiaoqing, BI Cuicui, LIU Qing, LI Junmin, HAN Chenghui, HAN Yong, QIN Fuqiang, ZHANG Chengxin, TAN Wei, WANG Bingbing, WANG Mian, CHENG Yin, LI Hao, WANG Guang, YUN Long. RESEARCH PROGRESS ON INTEGRATED THREE-DIMENSIONAL DETECTION TECHNOLOGY FOR ATMOSPHERIC POLLUTION IN COASTAL OCEAN BOUNDARY LAYER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 1-16. doi: 10.13205/j.hjgc.202403001
    [3]CHEN Fang, HU Jun, XU Lizhong, HUANG Weilong, GUO Eryang, RAO Qinghua. SPATIOTEMPORAL AGGREGATION CHANGE PATTERN OF PM2.5 AND O3 CONCENTRATION IN FUJIAN PROVINCE,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 171-182. doi: 10.13205/j.hjgc.202407019
    [4]GUO Yajun, WANG Hualan, LI Mingxuan, LI Ruohan. ANALYSIS OF AIR POLLUTION CHARACTERISTICS IN EXPRESSWAY AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 166-171. doi: 10.13205/j.hjgc.202312020
    [5]ZHANG Qing, ZHAO Liya, GUO Zhiwei, QI Kai. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS OF ATMOSPHERIC POLLUTANTS IN WUHAN FROM 2017 TO 2020[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 82-90. doi: 10.13205/j.hjgc.202302012
    [6]ZUO Penglai, GAO Qiang, ZHANG Yun, HAN Jiahui, TONG Yali, LIU Ping, GAO Jiajia. RESEARCH ON VERIFICATION FOR AIR POLLUTANTS ULTRA-LOW EMISSION TECHNOLOGIES OF COAL-FIRED POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 224-230. doi: 10.13205/j.hjgc.202212030
    [7]XIAO Kai, REN Xue-chang, CHEN Ren-hua. ANALYSIS OF TRANSMISSION CHARACTERISTICS AND POTENTIAL SOURCES OF AIR POLLUTANTS IN JIAYUGUAN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 92-101,109. doi: 10.13205/j.hjgc.202109014
    [8]YU Zhen-dong, XU Wei. CURRENT SITUATION AND COUNTERMEASURES OF AIR POLLUTION EMISSION CONTROL OF COKING INDUSTRY IN THE FENWEI PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 111-116,186. doi: 10.13205/j.hjgc.202101017
    [9]ZHANG Ya-ru, CHEN Yong-jin, GUO Qing-chun, SUN Hao. ANALYSIS ON TEMPO-SPATIAL VARIATION AND PREDICTION OF AIR POLLUTANTS IN JINAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 114-121. doi: 10.13205/j.hjgc.202002016
    [10]ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
    [17]Ding Wenshan Cai Liangcai Shao Bin Ding Fei, . RESEARCH ON AIRPORT AIR POLLUTION STATUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 69-72. doi: 10.13205/j.hjgc.201503014
    [18]Shi Lingling, Li Xiaomin, Liu Jing, Xu Yaxuan, Li Xing. AIR POLLUTION SITUATION OF HENAN PROVINCE AND ITS CONTROLLING MEASURES[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 104-108. doi: 10.13205/j.hjgc.201505022
  • Cited by

    Periodical cited type(1)

    1. 孟德友,蔡河章,王宏. 泉州市2017-2021年大气污染特征及新冠疫情的影响. 环境科学与技术. 2023(08): 66-76 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.1 %FULLTEXT: 9.1 %META: 88.3 %META: 88.3 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.3 %其他: 22.3 %上海: 0.9 %上海: 0.9 %东莞: 0.6 %东莞: 0.6 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %北京: 0.9 %北京: 0.9 %十堰: 0.6 %十堰: 0.6 %南京: 0.3 %南京: 0.3 %合肥: 0.9 %合肥: 0.9 %呼和浩特: 0.3 %呼和浩特: 0.3 %大同: 0.3 %大同: 0.3 %天津: 0.6 %天津: 0.6 %常州: 0.9 %常州: 0.9 %常德: 0.9 %常德: 0.9 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 1.5 %成都: 1.5 %扬州: 0.9 %扬州: 0.9 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.8 %杭州: 2.8 %湖州: 1.9 %湖州: 1.9 %漯河: 3.4 %漯河: 3.4 %芒廷维尤: 25.7 %芒廷维尤: 25.7 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.6 %苏州: 0.6 %蚌埠: 1.5 %蚌埠: 1.5 %衡阳: 0.9 %衡阳: 0.9 %衢州: 1.5 %衢州: 1.5 %西宁: 13.0 %西宁: 13.0 %西安: 0.6 %西安: 0.6 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.5 %运城: 1.5 %连云港: 0.3 %连云港: 0.3 %遵义: 0.3 %遵义: 0.3 %邢台: 0.3 %邢台: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 3.4 %郑州: 3.4 %重庆: 0.3 %重庆: 0.3 %长沙: 0.9 %长沙: 0.9 %阜阳: 0.3 %阜阳: 0.3 %青岛: 0.6 %青岛: 0.6 %其他上海东莞临汾保定北京十堰南京合肥呼和浩特大同天津常州常德平顶山广州张家口成都扬州昆明晋城朝阳杭州湖州漯河芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安贵阳运城连云港遵义邢台邯郸郑州重庆长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads(4) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return