Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YAN Xiuyi, GU Zhibin, LI Zhimeng, QIN Yu, DENG Meng. ARENIC IMMOBILIZATION IN SOIL USING IRON/TITANIUM COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 181-187. doi: 10.13205/j.hjgc.202308023
Citation: CHEN Long, LI Kai, TU Zhi, ZHOU Yu, ZHANG Jilong, MI Baobin, WU Fangfang. ADSORPTION PERFORMANCE AND MECHANISM OF Zn2+ ON MICROWAVE-PREPARED ALKALI LIGNIN BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 100-108. doi: 10.13205/j.hjgc.202308013

ADSORPTION PERFORMANCE AND MECHANISM OF Zn2+ ON MICROWAVE-PREPARED ALKALI LIGNIN BIOCHAR

doi: 10.13205/j.hjgc.202308013
  • Received Date: 2022-06-14
    Available Online: 2023-11-15
  • Alkali lignin is the major by-product of the paper-making industry. In order to explore a feasible way for resource utilization of alkali lignin, biochar was prepared from alkali lignin under microwave pyrolysis, and the adsorption performance and mechanism of biochar were further investigated in this paper. The results showed that the best adsorption effect of biochar was achieved under the adsorption condition of a charring temperature of 400 ℃, a biochar dosage of 0.4 g/L, an initial Zn2+ concentration of 200 mg/L, and solution pH=5; the adsorption process could be well described by the Langmuir model and the quasi-secondary kinetic model, indicating that the adsorption process was dominated by chemisorption, and the maximum adsorption capacity (qm) of biochar calculated from the Langmuir fitting reached 371.3 to 412.3 mg/g; the adsorption mechanism analysis of biochar revealed that the mechanisms mainly include mineral co-precipitation, DOM interaction, surface complexation (O-functional group complexation and Zn2+-π complexation), and ionic exchange. In addition, the results of quantitative analysis of the adsorption mechanism showed that mineral co-precipitation and surface complexation contributed 81.8%~85.6% and 7.6%~9.9% to the adsorption capacities of biochars, respectively.
  • [1]
    陈三理.硫化物对城市污泥重金属的钝化与稳定化研究[D].合肥:安徽农业大学,2016.
    [2]
    丁慧,朱宗强,曹爽,等.桉树遗态结构HAP/C复合材料对水中Zn(Ⅱ)的吸附研究[J].水处理技术,2017,43(6):73-76

    ,81.
    [3]
    SONG J P,ZHANG S S,LI G X,et al.Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal[J].Journal of Hazardous Materials,2020,391:121692.
    [4]
    MEUNIER N,DROGUI P,MONTANÉC,et al.Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate[J].Journal of Hazardous Materials,2006,137(1):581-590.
    [5]
    李旭恒.石墨烯电极在电化学法去除水体铅离子中的应用研究[D].北京:中国科学院大学(中国科学院东北地理与农业生态研究所),2017.
    [6]
    王思巧.纳米羟基铁改性大孔离子交换树脂的制备及其对重金属离子的去除[D].广州:华南理工大学,2020.
    [7]
    EFOME J E,RANA D,MATSUURA T,et al.Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process[J].Science of the Total Environment,2019,674:355-362.
    [8]
    贺俊钦,李仕友,伍随意,等.水生植物去除重金属研究进展[J].应用化工,2022,51(6):1804-1810.
    [9]
    WU F F,CHEN L,HU P,et al.Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(Ⅱ) from aquatic environment[J].Bioresource Technology,2021,322:124539.
    [10]
    冯丽蓉,校亮,袁国栋,等.原料和制炭方式对生物炭吸附抗生素的影响[J].中国环境科学,2020,40(3):1156-1165.
    [11]
    蒲生彦,贺玲玲,刘世宾.生物炭复合材料在废水处理中的应用研究进展[J].工业水处理,2019,39(9):1-7.
    [12]
    李雪英.不同碳材料的硝化还原改性及对Cu(Ⅱ)的吸附机理研究[D].南京:南京农业大学,2016.
    [13]
    商中省,涂佳勇,蔡毅猛,等.高锰酸钾改性核桃壳基生物炭对水溶液中Cu2+的吸附性能[J].天津科技大学学报,2020,35(5):25-31

    ,65.
    [14]
    王文亮,时宇杰,党泽攀,等.基于钙盐添加剂的碱木质素热裂解规律研究[J].陕西科技大学学报,2018,36(4):1-6.
    [15]
    赵媛媛,武书彬,廖艳芬.碱木质素在溶剂/水混合体系中的解聚特性[J].华南理工大学学报(自然科学版),2019,47(5):32-38.
    [16]
    TIAN R,DONG H R,CHEN J,et al.Electrochemical behaviors of biochar materials during pollutant removal in wastewater:a review[J].Chemical Engineering Journal,2021,425:130585.
    [17]
    WU F F,CHEN L,HU P,et al.Comparison of properties,adsorption performance and mechanisms to Cd (Ⅱ) on ligninderived biochars under different pyrolysis temperatures by microwave heating[J].Environmental Technology&Innovation,2022,25:102196.
    [18]
    嵇梦圆,胡逸文,梁程,等.农林废弃物基生物炭对重金属铅和镉的吸附特性[J].生态与农村环境学报,2020,36(1):106-114.
    [19]
    吴晴雯,孟梁,张志豪,等.芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J].环境化学,2015,34(9):1703-1709.
    [20]
    梁丽春,李朝霞,庞少峰,等.一步低温热解制备生物炭及其在染料废水处理中的应用[J].功能材料,2021,52 (10):10212-10220.
    [21]
    XIAO J,HU R,CHEN G C.Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for highefficiency removal of aquatic Cd(Ⅱ),Cu(Ⅱ) and Pb(Ⅱ)[J].Journal of Hazardous Materials,2020,387:121980.
    [22]
    李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,31(11):2277-2283.
    [23]
    孟莉蓉,俞浩丹,杨婷婷,等.改性豆饼生物质炭对铅的吸附特性[J].生态与农村环境学报,2018,34(7):643-650.
    [24]
    邓潇,周航,陈珊,等.改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J].环境工程学报,2016,10(11):6325-6331.
    [25]
    YANG L,CHEN J P.Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp.[J].Bioresource Technology,2008,99(2):297-307.
    [26]
    XIAO J,HU R,CHEN G C,et al.Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles:physicochemical properties,heavy metals sorption behavior and mechanism[J].Journal of Hazardous Materials,2020,399:123067.
    [27]
    DEMIRBAS A.Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication[J].Journal of Hazardous Materials,2004,109(1):221-226.
    [28]
    KLAPISZEWSKIŁ,SIWIN'SKA-STEFAN'SKA K,KOŁODYN'SKAD.Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(Ⅱ)[J].Chemical Engineering Journal,2017,314:169-181.
    [29]
    WANG Q R,ZHENG C L,SHEN Z X,et al.Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ions from water[J].Chemical Engineering Journal,2019,359:265-274.
    [30]
    YUAN H R,LU T,HUANG H Y,et al.Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J].Journal of Analytical and Applied Pyrolysis,2015,112:284-289.
    [31]
    LENG L J,HUANG H T,LI H,et al.Biochar stability assessment methods:a review[J].Science of the Total Environment,2019,647:210-222.
    [32]
    CUI X Q,FANG S Y,YAO Y Q,et al.Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar[J].Science of the Total Environment,2016,562:517-525.
    [33]
    GUO X J,PENG Y Y,LI N X,et al.Effect of biochar-derived DOM on the interaction between Cu(Ⅱ) and biochar prepared at different pyrolysis temperatures[J].Journal of Hazardous Materials,2022,421:126739.
    [34]
    HUANG M,LI Z W,LUO N L,et al.Application potential of biochar in environment:insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J].Science of the Total Environment,2019,646:220-228.
    [35]
    LI M,ZHANG A F,WU H M,et al.Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance[J].Journal of Hazardous Materials,2017,334:86-92.
    [36]
    SELBERG A,VIIK M,EHAPALU K,et al.Content and composition of natural organic matter in water of Lake Pitkjärv and mire feeding Kuke River (Estonia)[J].Journal of Hydrology,2011,400(1):274-280.
    [37]
    柯以侃.ATC 007紫外-可见吸收光谱分析技术[M].北京:中国标准出版社,2013.
    [38]
    S'WIETLIK J,SIKORSKA E.Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone[J].Water Research,2004,38(17):3791-3799.
    [39]
    康彩艳,李秋燕,刘金玉,等.不同热解温度生物炭对Cd2+的吸附影响[J].工业水处理,2021,41(5):68-72

    ,79.
    [40]
    HUSON M G,CHURCH J S,KAFI A A,et al.Heterogeneity of carbon fibre[J].Carbon,2014,68:240-249.
    [41]
    ZHANG P,WANG X H,XUE B,et al.Preparation of graphitelike biochars derived from straw and newspaper based on ballmilling and TEMPO-mediated oxidation and their supersorption performances to imidacloprid and sulfadiazine[J].Chemical Engineering Journal,2021,411:128502.
    [42]
    SHANG Y N,CHEN C,ZHANG P,et al.Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process[J].Chemical Engineering Journal,2019,375:122004.
    [43]
    闫代红,马亚培,宋凯悦,等.原料和热解温度对生物炭中可溶性有机质的影响[J].环境科学,2021,42(10):5030-5036.
    [44]
    许天星,高甫威,于梦梦,等.花生壳生物炭降解对硝基苯酚的机制探究[J].昆明理工大学学报(自然科学版),2022,47(1):118-127.
  • Relative Articles

    [1]LIAO Xun, LI Yancheng, ZHANG Yuduo, YANG Qilin, LI Jiang. RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 113-120. doi: 10.13205/j.hjgc.202402013
    [2]GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
    [3]LIU Haotian, TONG Jilong, YANG Hong, LIU Yongle, AO Congjie, WANG Shusu. COMPARATIVE STUDY ON VOCs POLLUTION CHARACTERISTICS AND SOURCE ANALYSIS BETWEEN LANZHOU DOWNTOWN AREA AND XIGU REFINING CHEMICAL INDUSTRY ZONE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 139-147. doi: 10.13205/j.hjgc.202404017
    [4]SONG Lusheng, SUN Zhenzhou, HU Jing, DENG Qinghai. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 155-164. doi: 10.13205/j.hjgc.202410019
    [5]ZHAO Jialong, FENG Heping, HU Shuguo, ZHOU Fengran, LI Jian, WANG Defa, LIU Zhiyong, ZHANG Tiqiang. DEVELOPMENT AND APPLICATION OF STABLE GASEOUS ISOTOPE ANALYSIS TECHNIQUE IN ATMOSPHERIC ENVIRONMENT MONITORING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 20-29,44. doi: 10.13205/j.hjgc.202310004
    [6]ZHANG Xiuhong, LI Renge, ZHAO Yueshuai, GAO Linting, NING Bo. ANALYSIS OF DIFFUSE POLLUTION CHARACTERISTICS IN AGRICULTURAL SPACE IN XI'AN BASED ON DPeRS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 142-149. doi: 10.13205/j.hjgc.202312017
    [7]LI Ganyu, CUI Xingtao. CHARACTERISTICS OF HEAVY METAL ELEMENTS POLLUTION AND HEALTH RISK ASSESSMENT OF ATMOSPHERIC DUST-FALL IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 278-287. doi: 10.13205/j.hjgc.202312035
    [8]ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
    [9]LI Yan-xue, ZHANG Meng-zhu, SHU Sha-sha, ZOU Jun-han, JIAO Wei, ZHOU Jun-yu. QUANTITATIVE IDENTIFICATION OF ANTHROPOGENIC HEAVY METAL SOURCES IN FARMLAND SOIL BASED ON ENRICHMENT FACTOR AND MLR-APCS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 173-177,232. doi: 10.13205/j.hjgc.202209023
    [10]ZHANG Zhi-jie, WEN Fei, ZHANG Ya-qun, ZHOU Jing, FENG Ai-ping. CHARACTERISTICS AND SOURCE ANALYSIS OF NON-POINT SOURCE POLLUTION LOAD IN THE YELLOW RIVER BASIN ON A REGIONAL SCALE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 81-88,142. doi: 10.13205/j.hjgc.202209011
    [11]GAO Wei, CHEN Yan, YAN Changan, LIU Yong. SOURCE IDENTIFICATION OF PHOSPHORUS IN VARIOUS DISTURBED RIVERS BASED ON LAM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 55-62. doi: 10.13205/j.hjgc.202206007
    [12]XIAO Yong, MO Pei, YIN Shi-yang, LIU Hong-lu, ZHANG Yun-hui. HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013
    [13]DENG Lin-li, ZHANG Kai-shan. ANALYSIS OF CHARACTERISTICS AND SOURCE APPORTION OF METAL POLLUTION IN PM2.5 IN TYPICAL METROPOLITAN CITIES WITH HAZE POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 113-119. doi: 10.13205/j.hjgc.202005020
    [14]DUAN Shou-peng, ZHENG Shao-kui. EFFECT OF NAHCO3 ADDITION INTO NaCl REGENERANT ON NITRATE-SELECTIVE ION EXCHANGE REMOVAL PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 72-77. doi: 10.13205/j.hjgc.202011012
    [18]Yuan Qiusheng, . NITROSATION PROCESS CONTROL IN LOW C/N WASTEWATER TREATMENT BY THREE-PHASE BIOLOGICAL FLUIDIZED BED[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 57-61. doi: 10.13205/j.hjgc.201501014
    [19]Wang Zaifeng, Zhang Shuiyan, Zhang Huaicheng, Zhao Hong, Ji Yaqin. SOURCE APPORTIONMENT TECHNOLOGY OF RIVER POLLUTION SOURCE BY WATER QUALITY MODEL COUPLING WITH CMB MODEL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 135-139. doi: 10.13205/j.hjgc.201502030
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.1 %FULLTEXT: 8.1 %META: 89.2 %META: 89.2 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.5 %其他: 22.5 %其他: 0.9 %其他: 0.9 %Brondby Strand: 0.9 %Brondby Strand: 0.9 %上海: 2.7 %上海: 2.7 %保定: 0.9 %保定: 0.9 %北京: 1.8 %北京: 1.8 %南京: 0.9 %南京: 0.9 %唐山: 0.9 %唐山: 0.9 %大同: 1.8 %大同: 1.8 %天津: 0.9 %天津: 0.9 %常德: 1.8 %常德: 1.8 %广州: 1.8 %广州: 1.8 %张家口: 3.6 %张家口: 3.6 %昆明: 1.8 %昆明: 1.8 %沈阳: 0.9 %沈阳: 0.9 %深圳: 0.9 %深圳: 0.9 %漯河: 4.5 %漯河: 4.5 %芒廷维尤: 25.2 %芒廷维尤: 25.2 %芝加哥: 4.5 %芝加哥: 4.5 %西宁: 7.2 %西宁: 7.2 %贵阳: 2.7 %贵阳: 2.7 %运城: 5.4 %运城: 5.4 %遵义: 0.9 %遵义: 0.9 %郑州: 1.8 %郑州: 1.8 %重庆: 1.8 %重庆: 1.8 %长沙: 0.9 %长沙: 0.9 %其他其他Brondby Strand上海保定北京南京唐山大同天津常德广州张家口昆明沈阳深圳漯河芒廷维尤芝加哥西宁贵阳运城遵义郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return