Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
Citation: CAO Ruining, LI Zhen, YAN Yulong, PENG Lin, HAN Donghang, NIU Yueyuan, DUAN Xiaolin, XU Yinjie. EFFECT OF DILUTION RATIO ON MEASUREMENT OF PM2.5 DURING DILUTION SAMPLING PROCESS OF COKING COAL CHARGING FLUE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 127-136. doi: 10.13205/j.hjgc.202308016

EFFECT OF DILUTION RATIO ON MEASUREMENT OF PM2.5 DURING DILUTION SAMPLING PROCESS OF COKING COAL CHARGING FLUE

doi: 10.13205/j.hjgc.202308016
  • Received Date: 2023-01-12
    Available Online: 2023-11-15
  • To investigate the effects of different dilution ratios on the particle size distribution and carbonaceous fraction of PM2.5 in the dilution sampling process of coking coal charging flue, the experiment of the coal coking process was carried out with a tube furnace. With low, medium, and high dilution ratios, PM2.5 size distribution, PM2.5 mass concentration, the ratio of organic carbon to elemental carbon (OC/EC) and polycyclic aromatic hydrocarbons (PAHs) concentration were determined under different dilution conditions. The result showed that the dilution ratio had a significant effect on ultrafine particles. As the dilution ratio increased, the particle number concentration showed an increasing trend, and the PM2.5 number concentration at the high dilution ratio increased by about 3.7 and 1.3 times, compared with the medium and low dilution ratios after particle filtration, respectively. In contrast, the concentration of PM2.5 with the high dilution ratio before particle filtration increased by 1.1 times approximately, compared to those at both the medium and low dilution ratios. As the dilution ratios increased, the corrected PM2.5 mass concentration and OC/EC ratio showed a decreasing trend. No significant changes in the corrected PM2.5 mass concentration and OC/EC ratio were observed when the dilution ratio increased from low level to medium level. At the high dilution level, the corrected PM2.5 mass concentration and OC/EC ratio decreased by about 64.8% and 45.1%, respectively, compared to those at low dilution ratios. The ring number distribution of PAHs was relatively stable at different dilution ratios. The normalized proportion of 4- and 5-ring aromatic hydrocarbons in PM2.5 was more than 29.1%. The dilution ratio increase promoted the gas-particle conversion of the organic matter, and the homogeneous condensation of gaseous organic matter on the small particle size range was enhanced. So that many ultrafine particles were generated and the total particle number concentration of PM2.5 drastically increased. A further increase in the dilution ratio could reduce the concentration of gaseous organic matter in the mixed gas system. Therefore, the heterogeneous condensation onto the larger size particles was impaired, and the corrected PM2.5 mass concentration was reduced. With medium dilution ratios (41 to 52), the gas-particle conversion of gaseous organic matter was more adequate than those at low dilution ratios, and both the disruption of the gas-particle phase equilibrium and over-condensation of organic matter due to the high dilution ratios were avoided. So it was recommended to determine the PM2.5 emission from the coking coal charging process with a medium dilution ratio range.
  • [1]
    HUO H,LEI Y,ZHANG Q,et al.China’s coke industry:recent policies,technology shift,and implication for energy and the environment[J].Energy Policy,2012,51:397-404.
    [2]
    LI Y,WANG G S,LI Z H,et al.A life cycle analysis of deploying coking technology to utilize low-rank coal in China[J].Sustainability,2020,12(12):1-17.
    [3]
    LIU G R,ZHENG M H,BA T,et al.A preliminary investigation on emission of polychlorinated dibenzo-p-dioxins/dibenzofurans and dioxin-like polychlorinated biphenyls from coke plants in China[J].Chemosphere,2009,75(5):692-695.
    [4]
    中国炼焦行业协会.焦化行业碳达峰碳中和行动方案[EB/OL].http://www.cnljxh.com/news/show.php?id=470.2022-08-03.
    [5]
    FU X,WANG S X,ZHAO B,et al.Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region,China[J].Atmospheric Environment,2013,70:39-50.
    [6]
    LEI Y,ZHANG Q,HE K B,et al.Primary anthropogenic aerosol emission trends for China,1990-2005[J].Atmospheric Chemistry and Physics,2011,11(3):931-954.
    [7]
    PAASONEN P,KUPIAINEN K,KLIMONT Z,et al.Continental anthropogenic primary particle number emissions[J].Atmospheric Chemistry and Physics,2016,16(11):6823-6840.
    [8]
    牟玲.机械炼焦过程主要大气污染物排放特征及迁移行为研究[D].太原:太原理工大学,2013.
    [9]
    WANG H L,HAO R,FANG L,et al.Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J].Science of the Total Environment,2021,752:141927.
    [10]
    王彦辉,赵亮,孙文强,等.炼焦工序颗粒物排放特征[J].环境科学,2018,39(12):5359-5364.
    [11]
    LIBERTI L,NOTARNICOLA M,PRIMERANO R,et al.Air pollution from a large steel factory:polycyclic aromatic hydrocarbon emissions from coke-oven batteries[J].Journal of the Air&Waste Management Association,2006,56(3):255-260.
    [12]
    李从庆.炼焦生产大气污染物排放特征研究[D].重庆:西南大学,2009.
    [13]
    许国梁.炼焦过程中多环芳烃(PAHs)排放特性研究[D].太原:太原理工大学,2011.
    [14]
    CHENG L,WEI W,ZHANG C Z,et al.Quantitation study on VOC emissions and their reduction potential for coking industry in China:based on in-situ measurements on treated and untreated plants[J].Science of the Total Environment,2022,836:155466.
    [15]
    张莹,邓建国,王刚,等.典型钢铁焦化厂可凝结颗粒物排放特征[J].环境工程,2020,38(9):154-158.
    [16]
    WANG G,DENG J G,ZHANG Y,et al.Evaluating airborne condensable particulate matter measurement methods in typical stationary sources in China[J].Environmental Science&Technology,2020,54:1363-1371.
    [17]
    YANG H H,LEE K T,HSIEH Y S,et al.Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants[J].Aerosol and Air Quality Research,2015,15(4):1672-1680.
    [18]
    蒋靖坤,邓建国,李振,等.固定污染源排气中PM2.5采样方法综述[J].环境科学,2014,35(5):2018-2024.
    [19]
    国家环境保护局.固定污染源排气中颗粒物测定与气态污染物采样方法:GB/T 16157-1996[S].北京:国家环境保护局,1996.
    [20]
    ENGLAND G C,WATSON J G,CHOW J C,et al.Dilution-based emissions sampling from stationary sources:part 1-compact sampler methodology and performance[J].Journal of the Air&Waste Management Association,2007,57(1):65-78.
    [21]
    李兴华,曹阳,蒋靖坤,等.固定源PM2.5稀释采样器的研制[J].环境科学学报,2015,35(10):3309-3315.
    [22]
    HILDEMANN L M,CASS G R,MARKOWSKI G R.A dilution stack sampler for collection of organic aerosol emissions:design,characterization and field tests[J].Aerosol Science and Technology,1989,10(1):193-204.
    [23]
    LIPSKY E M,PEKNEY N J,WALBERT G F,et al.Effects of dilution sampling on fine particle emissions from pulverized coal combustion[J].Aerosol Science and Technology,2004,38 (6):574-587.
    [24]
    LIPSKY E M,ROBINSON A L.Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke[J].Environmental Science&Technology,2006,40(1):155-162.
    [25]
    ZHENG S R,KONG S F,YAN Q,et al.Impact of dilution ratio and burning conditions on the number size distribution and sizedependent mixing state of primary particles from domestic solid fuel burning[J].Environmental Science&Technology Letters,2022,9(7):611-617.
    [26]
    邓建国,张莹,王乐冰,等.测量固定源可凝结颗粒物的稀释间接法及系统[J].环境科学学报,2020,40(11):4162-4168.
    [27]
    KOZIELSKA B,KONIECZYNSKI J.Polycyclic aromatic hydrocarbons in particulate matter emitted from coke oven battery[J].Fuel,2015,144:327-334.
    [28]
    LI H Y,GUO L L,CAO R F,et al.A wintertime study of PM2.5-bound polycyclic aromatic hydrocarbons in Taiyuan during 2009-2013:assessment of pollution control strategy in a typical basin region[J].Atmospheric Environment,2016,140:404-414.
    [29]
    STELLA A,PICCARDO M T,PALA M,et al.Temporal and spatial variations of polycyclic aromatic hydrocarbon concentrations around a coke oven plant[J].Journal of the Air&Waste Management Association,2012,62(9):1003-1011.
    [30]
    International Organization for Standardization (ISO).Stationary source emissions test method for determining PM2.5and PM10 mass in stack gases using cyclone samplers and sample dilution:ISO25597-2013[S].ISO:Geneva,Switzerland,2013.
    [31]
    KONG S F,JI Y Q,LI Z Y,et al.Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM2.5and PM10 from stationary sources based on dilution sampling[J].Atmospheric Environment,2013,77:155-165.
    [32]
    International Organization for Standardization (ISO).Stationary source emissions test method for determining PM2.5and PM10 mass in stack gases using cyclone samplers and sample dilution:ISO25597-2013[S].ISO:Geneva,Switzerland,2013.
    [33]
    Dekati e Diluter Pro[EB/OL].https://www.dekati.com/products/ediluter-pro/.
    [34]
    MYERS R E L T.Progress on developing a federal reference PMfine source test method[R].Research Triangle Park,NC:USEPA,2003.
    [35]
    LIGHTY J S,VERANTH J M,SAROFIM A F.Combustion aerosols:factors governing their size and composition and implications to human health[J].Journal of the Air&Waste Management Association,2000,50(9):1565-1618.
    [36]
    LINAK W P,MILLER C A,SEAMES W S,et al.On trimodal particle size distributions in fly ash from pulverized-coal combustion[J].Proceedings of the Combustion Institute,2002,29(1):441-447.
    [37]
    YU D X,XU M H,YAO H,et al.Use of elemental size distributions in identifying particle formation modes[J].Proceedings of the Combustion Institute,2007,31 (2):1921-1928.
    [38]
    LIPSKY E,STANIER C O,PANDIS S N,et al.Effects of sampling conditions on the size distribution of fine particulate matter emitted from a pilot-scale pulverized-coal combustor[J].Energy&Fuels,2002,16(2):302-310.
    [39]
    武亚凤.燃煤污染源排放颗粒物采样器比对及电厂测试应用[D].北京:中国环境科学研究院,2017.
    [40]
    PANKOW J F.Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere[J].Atmospheric Environment,1987,21(11):2275-2283.
    [41]
    PANKOW J F.An absorption model of gas/particle partitioning of organic compounds in the atmosphere[J].Atmospheric Environment,1994,28(2):185-188.
    [42]
    LIU X F,PENG L,BAI H H,et al.Characteristics of organic carbon and elemental carbon in the ambient air of coking plant[J].Aerosol and Air Quality Research,2015,15(4):1485-1493.
    [43]
    刘效峰,彭林,白慧玲,等.焦炉顶和厂区环境中有机碳和元素碳的粒径分布[J].环境科学,2013,34(8):2955-2960.
    [44]
    CASATI R,SCHEER V,VOGT R,et al.Measurement of nucleation and soot mode particle emission from a diesel passenger car in real world and laboratory in situ dilution[J].Atmospheric Environment,2007,41(10):2125-2135.
    [45]
    CRIPPA M,DECARLO P F,SLOWIK J G,et al.Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris[J].Atmospheric Chemistry and Physics,2013,13(2):961-981.
    [46]
    杨国威,孔少飞,郑淑睿,等.民用燃煤排放分级颗粒物中碳组分排放因子[J].环境科学,2018,39(8):3524-3534.
    [47]
    MU L,LI X M,LIU X F,et al.Characterization and emission factors of carbonaceous aerosols originating from coke production in China[J].Environmental Pollution,2021,268(Part B):115768.
    [48]
    WEITKAMP E A,LIPSKY E M,PANCRAS P J,et al.Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements[J].Atmospheric Environment,2005,39(36):6719-6733.
    [49]
    XU S S,LIU W X,TAO S.Emission of polycyclic aromatic hydrocarbons in China[J].Environmental Science&Technology,2006,40(3):702-708.
    [50]
    CHENG X L,LI E K,CANG D Q,et al.Generation of polycyclic aromatic hydrocarbons during coking[J].Journal of Iron and Steel Research,International,2010,17(12):6-10.
    [51]
    WANG R P,WANG X Q,CHENG S Y,et al.Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China[J].Science of the Total Environment,2022,809:151134.
    [52]
    LI J,ZHOU Y,SIMAYI M,et al.Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China[J].Journal of Cleaner Production,2019,214:224-235.
    [53]
    JIUN-HORNG T,KUO-HSIUNG L,CHIH-YU C,et al.Volatile organic compound constituents from an integrated iron and steel facility[J].Journal of Hazardous Materials,2008,157 (2/3):569-578.
    [54]
    郭鹏,仝纪龙,刘永乐,等.机械化炼焦VOCs排放源成分谱分析[J].环境科学与技术,2020,43(5):103-114.
    [55]
    SHI J W,DENG H,BAI Z P,et al.Emission and profile characteristic of volatile organic compounds emitted from coke production,iron smelt,heating station and power plant in Liaoning Province,China[J].Science of the Total Environment,2015,515/516:101-108.
    [56]
    王凤滨.基于全流和部分流稀释采样系统测试柴油发动机排放的相关性分析[D].武汉:武汉理工大学,2009.
    [57]
    牟玲.炼焦生产过程颗粒物和多环芳烃的排放特征[D].太原:太原理工大学,2010.
    [58]
    MU L,PENG L,LIU X F,et al.Emission characteristics and size distribution of polycyclic aromatic hydrocarbons from coke production in China[J].Atmospheric Research,2017,197:113-120.
    [59]
    刘效峰,彭林,白慧玲,等.炼焦炉周边环境PM10中多环芳烃的分布特征[J].华中科技大学学报(自然科学版),2013,41(9):85-90.
    [60]
    KOZIELSKA B,KONIECZYN'SKI J.Polycyclic aromatic hydrocarbons in particulate matter emitted from coke oven battery[J].Fuel,2015,144:327-334.
    [61]
    SHI Y,LI J G,GAO L.Study on polycyclic aromatic hydrocarbons distribution during single coal coking[J].Advanced Materials Research,2012,476/477/478:307-310.
    [62]
    孔少飞.大气污染源排放颗粒物组成、有害组分风险评价及清单构建研究[D].天津:南开大学,2012.
    [63]
    王静,朱利中,沈学优.某焦化厂空气中PAHs的污染现状及健康风险评价[J].环境科学,2003,24(1):135-138.
  • Relative Articles

    [1]DAN Aojiang, YAO Junqin, JIA Yangyang, ZHAO Xinwei, CHEN Yinguang. EFFECT OF ADDING METHANOL ON MICROBIAL COMMUNITIES AND ARGs IN A WASTEWATER TREATMENT PLANT OF AN INDUSTRIAL PARK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 124-131. doi: 10.13205/j.hjgc.202409012
    [2]FU Jiachen, WANG Jing, ZHAO Yiying, WEN Huiyan, AN Xiao, CHEN Yucheng, ZHOU Zhongbo. NITROGEN REMOVAL PERFORMANCE BY ALGAL-DRIVEN AEROBIC METHANE OXIDATION COUPLED WITH DENITRIFICATION IN A PHOTO-BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 18-25. doi: 10.13205/j.hjgc.202308003
    [3]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [4]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [5]YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
    [6]WANG Yan, LI Ji, ZHI Yao, ZHOU Yu, ZHENG Kai-kai, WANG Xiao-fei. DENITRIFICATION ENHANCEMENT EFFECT AND MICROBIAL FLORA ANALYSIS OF A NEW BIOMASS CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 63-68,117. doi: 10.13205/j.hjgc.202209008
    [7]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [8]YIN Hao-shuai, HUANG Kai, WANG Qing-qing, LI Shi-feng. ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010
    [9]FU Kun-ming, FU Si-bo, LIU Fan-qi, QIU Fu-guo, CAO Xiu-qin. EFFECT OF DIFFERENT CARBON SOURCES ON N2O RELEASE IN DENITRIFICATION PROCESS OF A SBR REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 56-62. doi: 10.13205/j.hjgc.202109009
    [10]HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007
    [11]ZHAO Min-juan, SHEN Yuan-yuan, GAO Tian-peng, YAN Jia-cong, YANG Ji-huan. EFFECT OF BROMINATED FLAME RETARDANT ON BIOLOGICAL NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 49-53,111. doi: 10.13205/j.hjgc.202012009
    [12]ZHAO Wan-qing, LI Bo-lin, WANG Wei, LI Ye, WANG Heng, WANG Yue, LIANG Ya-nan. PERFORMANCE OF A GRANULAR-FLOCCULENT SLUDGE COUPLING SINGLE-STAGE AUTOTROPHIC NITROGEN REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 43-47,199. doi: 10.13205/j.hjgc.202009007
    [13]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [14]ZHOU Yuan, ZHI Li-ling, ZHENG Kai-kai, WANG Yan, LI Ji. INFLUENCING FACTORS AND OPTIMIZATION ANALYSIS OF DENITRIFICATION RATE IN URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 100-108. doi: 10.13205/j.hjgc.202007016
    [15]MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010
    [18]Zhang Weizheng Chen Yongchun Liu Bingjun Li Zhenzhen Tao Xianchao Shi Xianyang, . MATHEMATICAL SIMULATION OF SIMULTANEOUS DENITRIFICATION AND METHANOGENESIS WITH SODIUM ACETATE AS THE ELECTRON DONOR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 63-69. doi: 10.13205/j.hjgc.201504014
  • Cited by

    Periodical cited type(3)

    1. 孙冬梅,那守海. 旅游活动碳排放管理评价指标体系构建及实证研究. 生态经济. 2025(03): 150-157 .
    2. 奥勇,吴京盛,汪雅,张亦恒,李雪娇. 中国旅游环境承载力时空演化与障碍度分析. 生态经济. 2024(10): 126-135+189 .
    3. 潘云龙,钟颜,傅承哲. “横琴驱动”:旅游容量视角下粤港澳大湾区旅游增长模式探析——以珠海市为例. 城市观察. 2023(04): 16-28+160-161 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 85.2 %META: 85.2 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.9 %其他: 17.9 %China: 1.7 %China: 1.7 %Switzerland: 1.3 %Switzerland: 1.3 %上海: 0.9 %上海: 0.9 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %北京: 2.2 %北京: 2.2 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 1.3 %台州: 1.3 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 2.6 %天津: 2.6 %太原: 0.9 %太原: 0.9 %宁波: 0.4 %宁波: 0.4 %安康: 0.9 %安康: 0.9 %宜春: 0.4 %宜春: 0.4 %常德: 0.4 %常德: 0.4 %广州: 1.7 %广州: 1.7 %张家口: 0.9 %张家口: 0.9 %成都: 1.3 %成都: 1.3 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %无锡: 0.4 %无锡: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %本溪: 0.4 %本溪: 0.4 %桂林: 2.2 %桂林: 2.2 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %法兰克福: 1.3 %法兰克福: 1.3 %济南: 0.9 %济南: 0.9 %济源: 0.9 %济源: 0.9 %湖州: 0.4 %湖州: 0.4 %滨州: 0.4 %滨州: 0.4 %漯河: 1.7 %漯河: 1.7 %珠海: 0.4 %珠海: 0.4 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 28.8 %芒廷维尤: 28.8 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %西宁: 10.0 %西宁: 10.0 %西安: 2.2 %西安: 2.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 3.5 %运城: 3.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 0.4 %重庆: 0.4 %长治: 0.4 %长治: 0.4 %其他ChinaSwitzerland上海东莞临汾北京十堰南京厦门台州合肥哈尔滨天津太原宁波安康宜春常德广州张家口成都拉贾斯坦邦无锡晋城朝阳本溪桂林武汉沈阳法兰克福济南济源湖州滨州漯河珠海石家庄秦皇岛芒廷维尤芝加哥苏州西宁西安贵阳运城遵义邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads(5) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return