Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
JIE Ya-wei, XU Ran-yun, DING Wei, JIANG Yi-heng, ZHANG Ben, LIU Hong-yuan. AOX FORMATION DURING THE ADVANCED OXIDATION OF PHENOL WASTEWATER CONTAINING CHLORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 1-8. doi: 10.13205/j.hjgc.202205001
Citation: ZHONG Yiwen, SU Wenxing, JIANG Shan, WANG Yinhong, LIU Wangrong, WU Genyi, ZENG Dong, CHEN Lei. MICROBIAL COMMUNITY SUCCESSION DURING LIQUID MANURE FERMENTATION AND ITS CORRELATION WITH ENVIRONMENTAL FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 145-153. doi: 10.13205/j.hjgc.202308018

MICROBIAL COMMUNITY SUCCESSION DURING LIQUID MANURE FERMENTATION AND ITS CORRELATION WITH ENVIRONMENTAL FACTORS

doi: 10.13205/j.hjgc.202308018
  • Received Date: 2022-10-13
    Available Online: 2023-11-15
  • To study the changes in physical and chemical indices and the succession characteristics of the microbial community structure in the process of manure fermentation, using the aerobic fermentation method, commercial microbial compounds including effective microorganisms(EM) and organic fermentation bacteria(OFB), were added for fermentation after dilution of dairy manure. Changes in COD, nitrogen and phosphorus during the fermentation process were analysed. The seed germination index was used as a maturity index to investigate the maturity of the liquid manure, and the structural characteristics of the bacterial community in the fermentation process were studied. The results showed that the addition of microbial compounds can effectively break down organic matter, and the liquid manure can reach the maturity stage more quickly after diluting to low (L) concentrations. The seed germination index of the L-OFB treatment reached 84.01% at the end of fermentation, indicating full maturity. Alpha diversity and species difference analysis using high-throughput sequencing showed that the main dominant phyla in the fermentation process were Proteobacteria, Bacteroidetes and Firmicutes. During the fermentation period, the relative abundance of the ML635J-40 aquatic group, Truepera, Aquamicrobium, Anaerovorax and Pseudomonas was higher in the samples treated with EM and OFB than in the control. The results of the redundancy analysis showed that total nitrogen was the prime factor significantly correlated with the change in bacterial community composition (P<0.05). The correlation between seed germination index and Aquamicrobium was the strongest, and the relative abundance was high at the end of fermentation, which could be used as an indicator microorganism of maturity. This study can provide a theoretical basis for future optimisation of the liquid manure treatment process.
  • [1]
    康健.畜禽粪便堆肥过程中物质转化和微生物种群演变规律及酶活性机理研究[D].兰州:兰州理工大学,2019.
    [2]
    李莉,杨昕涧,何家俊,等.我国畜禽粪便资源化利用的现状及展望[J].中国奶牛,2020,367(11):55-60.
    [3]
    孟祥海.中国畜牧业环境污染防治问题研究[D].武汉:华中农业大学,2014.
    [4]
    岳丹,王磊,乔莉娟,等.高效纤维素降解菌株筛选及其复合微生物菌剂在有机堆肥中的应用效果[J].江苏农业科学,2018,46(17):273-276.
    [5]
    孙旭,郝玉敏,苏良湖,等.微生物菌剂对稻秆-猪粪-蘑菇渣堆肥腐熟进程及品质的影响[J].安徽农业科学,2016,44(27):167-171.
    [6]
    席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备[J].环境科学研究,2003,16(2):58-60

    ,64.
    [7]
    王信,蔡晓剑,王亚艺,等.牛粪高温好氧堆肥中发酵菌剂筛选研究[J].青海大学学报,2019,37(5):20-25.
    [8]
    张晓波.紫色硫细菌Marichromatium gracile YL28对海水养殖水体氮污染的生物修复[D].厦门:华侨大学,2019.
    [9]
    樊婷婷,时雨,王大春,等.复合菌剂生物处理生态型污水的实验研究[J].水处理技术,2016,42(8):32-35.
    [10]
    李欣儒.发酵液体牛粪与化肥配施对玉米生长与产量的农学效应研究[D].哈尔滨:东北农业大学,2021.
    [11]
    盛婧,孙国峰,郑建初.典型粪污处理模式下规模养猪场农牧结合规模配置研究Ⅰ.固液分离-液体厌氧发酵模式[J].中国生态农业学报,2015,23(2):199-206.
    [12]
    李耀宇.猪场粪污厌氧发酵过程解析及沼液处理工艺研究[D].湘潭:湘潭大学,2019.
    [13]
    QUINCE C,WALKER A W,SIMPSON J T,et al.Shotgun metagenomics,from sampling to analysis[J].Nature Biotechnology,2017,35(9):833-844.
    [14]
    本刊编辑部.哈希发布20 min消解COD预制管试剂[J].中国给水排水,2013,29(4):99.
    [15]
    袁梦冬.规模化猪场废水处理系统中氧化塘产甲烷和脱氮微生物学机理研究[D].杭州:浙江大学,2016.
    [16]
    卢洋洋.不同菌种组合对牛粪好氧堆肥发酵的影响研究[D].呼和浩特:内蒙古农业大学,2019.
    [17]
    张丽萍,刘红江,盛婧,等.发酵周期、贮存时间和过滤对沼液养分和理化性状变化的影响[J].农业资源与环境学报,2018,35(1):32-39.
    [18]
    武一奇.猪粪堆肥过程氮素转化与抗性基因转移机制及调控技术[D].哈尔滨:哈尔滨工业大学,2021.
    [19]
    李杰.不同微生物菌剂对牛粪和玉米秸秆高温腐熟的影响[D].兰州:甘肃农业大学,2013.
    [20]
    单德鑫.牛粪发酵过程中碳、氮、磷转化研究[D].哈尔滨:东北农业大学,2006.
    [21]
    汤江武,朱利中.不同堆肥条件对种子发芽指数影响的研究[J].浙江农业科学,2008,296(5):583-586.
    [22]
    卢洋洋,杨硕,张玉,等.不同复合微生物菌剂对牛粪堆肥效果的影响[J].家畜生态学报,2021,42(2):43-49.
    [23]
    张雪辰,邓双,王旭东.快腐剂对畜禽粪便堆肥过程中腐熟度的影响[J].环境工程学报,2015,9(2):888-894.
    [24]
    WALTERS K E,MARTINY J B H.Alpha-,beta-,and gamma-diversity of bacteria varies across habitats[J].PLoS One,2020,15(9):e0233872.
    [25]
    HILL T C,WALSH K A,HARRIS J A,et al.Using ecological diversity measures with bacterial communities[J].FEMS Microbiology Ecology,2003,43(1):1-11.
    [26]
    史龙翔,谷洁,潘洪加,等.复合菌剂提高果树枝条堆肥过程中酶活性[J].农业工程学报,2015,31(5):244-251.
    [27]
    王秀红,史向远,张纪涛,等.鸡粪好氧堆肥腐熟度、重金属残留及微生物菌群分析[J].山西农业科学,2021,49(9):1094-1099.
    [28]
    HILL V R,KAHLER A M,JOTHIKUMAR N,et al.Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples[J].Apply and Environmental Microbiology,2007,73(13):4218-4225.
    [29]
    ZHONG X Z,LI X X,ZENG Y,et al.Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools[J].Bioresource Technology,2020,306:123091.doi.org/10.1016/j.biortech.2020.123091.
    [30]
    徐杰,许修宏,门梦琪,等.木质纤维素降解菌剂DN-1促进堆肥腐熟度的评估[J].中国土壤与肥料,2016,266(6):146-151.
    [31]
    李秋芬,有小娟,张艳,等.象山港中部养殖区细菌群落结构的特征及其在生境修复过程中的变化[J].中国水产科学,2013,20(6):1234-1246.
    [32]
    黄玉杰,陈贯虹,张强,等.微生物除臭剂在畜禽粪便无害化处理中的应用进展[J].当代畜牧,2017(3):53-57.
    [33]
    NOLLA-ARDEVOL V,STROUS M,TEGETMEYER H E.Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions:biogas production,metagenome,and metatranscriptome[J].Frontiers in Microbiology,2015,6.doi.org/10.3389/fmicp.2015.00597.doi.org/10.3389/fmicp.2015.00597.
    [34]
    LI H Y,ZHENG X Q,CAO H Y,et al.Reduction of antibiotic resistance genes under different conditions during composting process of aerobic combined with anaerobic[J].Bioresource Technology,2021,325,124710.doi.org/10.1016/j.biortech.2021.124710.
    [35]
    MUJTABA G,RIZWAN M,LEE K.Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris[J].Journal of Industrial and Engineering Chemistry,2017,49:145-151.
    [36]
    LI L Y,FENG J W,ZHANG L,et al.Enhanced nitrogen and phosphorus removal by natural pyrite-based constructed wetland with intermittent aeration[J].Environmental Science and Pollution Research,2021,28(48):69012-69028.
    [37]
    陈翰.进水有机物浓度对好氧颗粒污泥形成的影响机制[D].哈尔滨:哈尔滨工业大学,2019.
    [38]
    尤新新,王晟,都林娜.一种内源性复合微生物菌剂的特性及其固定化对猪场粪污水的处理效果[J].浙江大学学报(农业与生命科学版),2021,47(1):98-106.
    [39]
    李文兵,毕江涛,刘鹏,等.牛粪好氧堆肥发酵微生物群落结构演替与环境因子和腐熟度的相关性[J].环境工程学报,2022,40(1):69-77.
    [40]
    ZHANG C,YUAN C B,ZHU Y A,et al.A novel MABR process based on HN-AD bacteria-chlorella symbiotic system:effects of COD/TN ratios on performance,community structure,functional bacteria and key genes[J].Journal of Water Process Engineering,2022,49:103157.
    [41]
    WALLENSTEIN M D,MCMAHON S,SCHIMEL J.Bacterial and fungal community structure in Arctic tundra tussock and shrub soils[J].Fems Microbiology Ecology,2007,59(2):428-435.
  • Relative Articles

    [1]DU Jiamin, WEI Yuanyuan, DING Chao, ZHU Haochuan, LIU Weijing, TANG Baiyang, YANG Shiyao, FENG Qian. RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 50-60. doi: 10.13205/j.hjgc.202411006
    [2]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [3]LIU Yuxuan, GAO Yahong, WANG Zhenbei, HU Qian, QI Fei, SUN Dezhi. REVIEW OF OVERFLOW POLLUTION CONTROL OF URBAN COMBINED DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 32-47. doi: 10.13205/j.hjgc.202312004
    [4]WANG Jianlong, ZHANG Changhe, XI Guangpeng. A NOVEL VOLUME OPTIMIZATION METHOD FOR DETENTION TANKS FOR FLOODING IMMIGRATION BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 166-173. doi: 10.13205/j.hjgc.202306022
    [5]PENG Zhouyang, JIN Xi, SANG Wenjiao. OPTIMIZATION OF DESIGN OF TERMINAL FLOW INTERCEPTION AND STORAGE FACILITIES OF COMBINED DRAINAGE SYSTEM BASED ON NSGA-Ⅲ ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 143-149. doi: 10.13205/j.hjgc.202208020
    [6]ZHENG Qiongqi, LIN Yiyuan, YIN Hailong, XU Zuxin, SU Lei, WU Shanshan. SOURCE TRACKING OF WASTEWATER DISCHARGE INTO RIVERS USING HYDRODYNAMIC DIFFUSION WAVE MODEL AND GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 63-69. doi: 10.13205/j.hjgc.202206008
    [7]HE Jun-chao, LI Ming-ming, LIU Rui, BAI Wei-lan, WANG Qi. RESEARCH ON MANAGEMENT AND CONTROL SYSTEM OF COMBINED SEWER OVERFLOW POLLUTION IN CHINA AND OVERSEAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 42-49. doi: 10.13205/j.hjgc.202104008
    [8]ZHANG Zi-yang, QI Hao, ZHANG Xiao-ran, LI Hai-yan. INFLUENCING MECHANISM OF PERMEABLE PAVEMENT TYPE ON REMOVAL EFFICIENCY OF HEAVY METALS FROM RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 41-46,88. doi: 10.13205/j.hjgc.202102007
    [9]LONG Jia, WANG Si-si, FENG Meng-ke. APPLICATION STATUS AND EVALUATION OPTIMIZATION OF THE PLANTS IN BEIJING LID FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 89-95. doi: 10.13205/j.hjgc.202004016
    [10]GE Jin-jin, ZHANG Wen-hai, YANG Yong, PENG Wen-qi, QU Xiao-dong. STUDY ON THE METHOD TO SOLVE WATER RESOURCE CONFLICTS: A CASE STUDY OF THE JINJIANG RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 47-52. doi: 10.13205/j.hjgc.202010008
    [11]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
    [12]YANG Zheng, LI Jun-qi, WANG Wen-liang, CHE Wu, JU Chen-tao, ZHAO Yang. THE ADVANCED RECOGNITION OF LOW IMPACT DEVELOPMENT AND SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 10-15,38. doi: 10.13205/j.hjgc.202004003
    [17]INTEGRATED OPTIMIZATION OF COMBINED SEWER SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 57-61. doi: 10.13205/j.hjgc.201412009
  • Cited by

    Periodical cited type(28)

    1. 吴姬,王婧,符式锦. 海口市城乡环境梯度带土壤重金属富集特征. 热带作物学报. 2025(02): 503-513 .
    2. 邵璐,刘洪,欧阳渊,张景华,高文龙,刘小念,宋雯洁,吴君毅,苏悦. 三峡库区典型岩石土壤中重(类)金属迁移富集特征研究及风险评价. 西北地质. 2025(01): 204-218 .
    3. 陈佳,范萍萍,龙文涛,邰良. 土壤侵蚀对重金属迁移的作用规律与机制研究进展. 水土保持研究. 2024(01): 460-470 .
    4. 占楠彪,谷端银,李婷,崔秀敏,娄燕宏,诸葛玉平. 中轻度重金属污染农田土壤的时空特征及改良. 农业环境科学学报. 2024(02): 294-307 .
    5. 葛磊,方凤满,周浩,姚有如,谭华荣,王飞,林跃胜. 菜子湖湿地不同类型土壤重金属的垂直分布特征及迁移规律. 环境化学. 2024(03): 933-941 .
    6. 闫金霞,杨家哲,杜正浩. 垃圾堆放场土壤重金属分布特征及污染评价. 山东化工. 2024(05): 231-236 .
    7. 张锦明,张建泽,王洲瑜,汪世轩,赵东阳,阿不都艾尼·阿不里. 基于PMF模型的吉木萨尔县土壤重金属空间分布特征与来源解析. 新疆大学学报(自然科学版)(中英文). 2024(03): 354-363+374 .
    8. 贾少宁,申发,颜宁,王若菲,刘苏慧,于洋,栗云召,杨继松,于君宝. 黄河三角洲不同土地利用方式下土壤重金属分析评价. 鲁东大学学报(自然科学版). 2023(03): 193-202 .
    9. 丰土根,郑柳钦,张箭,韦扬. 重金属-有机物复合污染土风险评价新方法. 环境工程. 2023(07): 222-228 . 本站查看
    10. 高梦绯,郑顺安,刘昌华,郜允兵,高戈,赵亚楠. 基于多因素融合的耕地土壤重金属污染风险评价. 环境工程. 2023(08): 233-241 . 本站查看
    11. 阮彦楠,吕本春,王志远,王应学,王伟,陈检锋,尹梅,陈华,付利波. 云南某区典型农田土壤重金属污染和潜在生态风险评价. 安徽农业科学. 2023(21): 65-72 .
    12. 陈海英,虎啸,覃昆,魏腾川,白薇. 巴中市巴州区水田与旱地土壤重金属富集与垂直分布特征. 四川农业科技. 2023(12): 56-59 .
    13. 陈敏毅,宋清梅,叶权运,游学睿,吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征. 生态环境学报. 2023(12): 2228-2235 .
    14. 黄钟霆,易盛炜,陈贝贝,彭锐,石雪芳,李峰. 典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价. 环境科学. 2022(02): 975-984 .
    15. 毛盼,王明娅,孙昂,陈纯,冯茜茜,韩桥,王明仕. 某典型废弃硫酸场地土壤重金属污染特征与评价. 环境化学. 2022(02): 511-525 .
    16. 丰土根,郑柳钦,张箭,张福海,宋健. 废弃农药厂重金属污染土风险评价及焙烧修复效果研究. 环境工程. 2022(02): 132-138 . 本站查看
    17. 陈锐,杜双杰,徐伟,竹涛. 南京城郊某典型退耕农用地土壤重金属含量特征与污染评价分析. 环境工程. 2022(03): 102-110+165 . 本站查看
    18. 朱迪,张朝晖,王智慧. 农田-泥炭藓系统重金属富集特征与生态风险评价. 环境科学. 2022(04): 2115-2123 .
    19. 姜宇,郭庆军,邓义楠. 长江流域沉积物和土壤重金属分布规律研究进展. 生态学杂志. 2022(04): 804-812 .
    20. 张瀚丹,刘新会,王宇静,段林帅,董璐. 土壤剖面重金属污染对微生物群落结构的影响. 环境科学与技术. 2022(04): 184-191 .
    21. 王磊,周璐瑶,胡静博,蔡佳坊,王伟,肖万川,何妙妙. 再生水灌溉对稻田重金属分布的影响. 排灌机械工程学报. 2022(08): 842-849 .
    22. 李延雪,张梦竹,舒莎莎,邹君晗,焦伟,周峻宇. 基于富集因子法与MLR-APCS模型应用的农田土壤重金属人为来源定量识别. 环境工程. 2022(09): 173-177+232 . 本站查看
    23. 赵家印,杨地,杨湘智,张宁,刘宇,王蒙蒙,吴云成,陈秋会,田伟. 云南省某煤矿开采遗址周边农用地土壤重金属污染评价及源解析研究. 生态与农村环境学报. 2022(11): 1473-1481 .
    24. 陆音,肖昕,徐蕾,梁妍,栾慧君,塞古,李俊池,郭春滢. 煤矿开采裂缝对土壤中重金属分布的影响. 环境科技. 2022(06): 1-5+12 .
    25. 孟婷婷,刘金宝,董浩,王博,张国剑. 城市绿地不同管理方式土壤重金属污染及生态风险评价. 环境工程. 2022(12): 217-223 . 本站查看
    26. 马晓慧,郝春明,王梦露,朱云燕. 峰峰煤矿塌陷区典型农田土壤剖面重金素元素化学风化规律. 科学技术与工程. 2021(03): 1202-1210 .
    27. 浦江,张翠萍,刘淑娟,杨小燕,赵斌,李淑英,陆轶峰,王媛媛,周元清. 杞麓湖径流区不同湿地沉积物重金属污染特征及潜在生态风险评价. 农业资源与环境学报. 2021(05): 755-763 .
    28. 王多兵,张猛,韩冬雅,陈锦,朱鹏鹏,肖立权. 湖南典型煤矿区地表水——土壤系统重金属污染特征、来源及风险. 应用化工. 2021(S2): 94-100+112 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 84.3 %META: 84.3 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %其他: 1.0 %其他: 1.0 %China: 0.3 %China: 0.3 %United Kingdom: 1.6 %United Kingdom: 1.6 %东莞: 0.6 %东莞: 0.6 %临汾: 0.6 %临汾: 0.6 %保定: 0.3 %保定: 0.3 %北京: 4.8 %北京: 4.8 %十堰: 1.0 %十堰: 1.0 %南京: 1.0 %南京: 1.0 %南宁: 0.3 %南宁: 0.3 %南通: 0.6 %南通: 0.6 %台州: 3.2 %台州: 3.2 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 2.2 %天津: 2.2 %宜昌: 0.3 %宜昌: 0.3 %宣城: 0.3 %宣城: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %张家口: 0.6 %张家口: 0.6 %成都: 0.3 %成都: 0.3 %扬州: 3.5 %扬州: 3.5 %拉贾斯坦邦: 0.3 %拉贾斯坦邦: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.6 %杭州: 2.6 %武威: 0.6 %武威: 0.6 %武汉: 0.6 %武汉: 0.6 %济源: 0.6 %济源: 0.6 %温州: 1.0 %温州: 1.0 %湖州: 3.5 %湖州: 3.5 %漯河: 5.4 %漯河: 5.4 %石家庄: 0.6 %石家庄: 0.6 %芒廷维尤: 32.3 %芒廷维尤: 32.3 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 2.2 %苏州: 2.2 %衡水: 0.3 %衡水: 0.3 %衢州: 1.0 %衢州: 1.0 %西宁: 4.2 %西宁: 4.2 %西安: 0.3 %西安: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.6 %运城: 2.6 %遵义: 0.3 %遵义: 0.3 %邯郸: 1.0 %邯郸: 1.0 %郑州: 0.3 %郑州: 0.3 %重庆: 0.6 %重庆: 0.6 %长沙: 1.3 %长沙: 1.3 %长治: 0.6 %长治: 0.6 %其他其他ChinaUnited Kingdom东莞临汾保定北京十堰南京南宁南通台州嘉兴天津宜昌宣城常德广州张家口成都扬州拉贾斯坦邦昆明晋城朝阳杭州武威武汉济源温州湖州漯河石家庄芒廷维尤芝加哥苏州衡水衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(7) Cited by(48)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return