Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DU Kun, CHI Yong, WANG Lixian. AN EXPERIMENTAL STUDY ON PRODUCTION OF ORGANIC FERTILIZER FROM FOOD WASTE BY HYDROTHERMAL CONVERSION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 162-168. doi: 10.13205/j.hjgc.202308020
Citation: DU Kun, CHI Yong, WANG Lixian. AN EXPERIMENTAL STUDY ON PRODUCTION OF ORGANIC FERTILIZER FROM FOOD WASTE BY HYDROTHERMAL CONVERSION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 162-168. doi: 10.13205/j.hjgc.202308020

AN EXPERIMENTAL STUDY ON PRODUCTION OF ORGANIC FERTILIZER FROM FOOD WASTE BY HYDROTHERMAL CONVERSION

doi: 10.13205/j.hjgc.202308020
  • Received Date: 2022-11-28
    Available Online: 2023-11-15
  • Hydrothermal treatment has the advantages of high efficiency, cleanness, and safety in food waste disposal, which has been widely concerned by global scholars in recent years. In this paper, the experimental study on the production of organic fertilizer from simulated food waste by hydrothermal conversion was carried out at a temperature of 175 to 235 ℃, and a retention time of 20 to 80 min. Results showed that the fertilizer efficiency of food waste after hydrothermal treatment was higher than traditional composting treatment. The content of organic matter and total nutrients were 55.77% to 72.92% and 7.39% to 8.20% respectively, far higher than the limiting values in the Standard of Organic Fertilizer (NY 525—2021). Hydrothermal process could promote the formation of humic acid. With a retention time of 40 min at 205 ℃, the humic acid content reached 21.70%, and the humification index (the ratio of humic to fulvic) could be 1.67, reflecting a very high degree of maturity. Hydrothermal treatment could enhance the migration of salts. Most monovalent metals (potassium and sodium) resided into the liquid phase from the solid phase, while most multivalent metals (calcium, magnesium, and iron) remained integrated within the solid phase.
  • [1]
    国家统计局.中国统计年鉴2017—2021

    [Z/OL].
    [2]
    JIN C X,SUN S Q,YANG D H,et al.Anaerobic digestion:an alternative resource treatment option for food waste in China[J].Science of the Total Environment,2021,779.
    [3]
    毕珠洁,邰俊,陈奕,等.上海市有机垃圾原料特性研究[J].环境卫生工程,2016,24(4):5-7.
    [4]
    毕峰.社区易腐垃圾就地成肥设备中试及其臭气排放特征研究[D].杭州:浙江大学,2020.
    [5]
    周传斌,刘晶茹,王如松,等.城市社区生活垃圾减量化的集成技术研究[J].环境科学,2010,31(11):2768-2773.
    [6]
    姚武,顾燕青,巫阳,等.畜粪堆肥过程中腐殖质形成特征研究进展[J].杭州师范大学学报(自然科学版),2014(5):517-522.
    [7]
    黄华明.厨馀堆肥腐熟度评估分析[J].安徽农业科学,2011,39(3):1475-1478.
    [8]
    陈晨,谭昊,李文祥,等.典型村镇有机废物有机肥产品的品质表征[J].中国沼气,2022,40(2):54-59.
    [9]
    张莹,谷萌,孙捷,等.餐厨垃圾水热炭化产物分配规律及液固产物特性研究[J].中国环境科学,2022,42(1):239-249.
    [10]
    LANG Q Q,ZHANG B,LIU Z G,et al.Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization[J].Journal of Environmental Management,2019,233:440-446.
    [11]
    YANG F,ZHANG S S,CHENG K,et al.A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J].Science of the Total Environment,2019,686:1140-1151.
    [12]
    马小妹.“水热魔法”助力湿垃圾变废为宝——专访上海交通大学环境科学与工程学院教授金放鸣[J].环境教育,2019(8):26-29.
    [13]
    IDOWU I,LI L,FLORA J R V,et al.Hydrothermal carbonization of food waste for nutrient recovery and reuse[J].Waste Management,2017,69:480-491.
    [14]
    LI B,YIN T,UDUGAMA I A,et al.Food waste and the embedded phosphorus footprint in China[J].Journal of Cleaner Production,2020,252(10):119909.
    [15]
    WANG L X,CHI Y,DU K,et al.Hydrothermal treatment of food waste for bio-fertilizer production:formation and regulation of humus substances in hydrochar[J].Science of the Total Environment,2023,14(8):2767-2781.
    [16]
    文启孝.土壤有机质研究法[M].北京:农业出版社,1984:136-148.
    [17]
    SHARMA H B,PANIGRAHI S,DUBEY B K.Food waste hydrothermal carbonization:study on the effects of reaction severities,pelletization and framework development using approaches of the circular economy[J].Bioresource Technology,2021,333:125187.
    [18]
    LIN C.A negative-pressure aeration system for composting food wastes[J].Bioresource Technology,2008,99(16):7651-7656.
    [19]
    舒迪,熊晨,池涌.厨余垃圾水热处理的腐殖化特性研究[J].环境科学学报,2016,36(7):2563-2570.
    [20]
    姚武,顾燕青,巫阳,等.畜粪堆肥过程中腐殖质形成特征研究进展[J].杭州师范大学学报(自然科学版),2014(5):517-522.
    [21]
    王文祥,张雷,李爱民.废弃生物质水热腐殖化产物与介质酸碱性响应关系[J].大连理工大学学报,2022,62(1):9-17.
    [22]
    唐璐.不同堆肥条件对堆肥过程中碳素损失及腐殖质形成的影响研究[D].杭州:杭州师范大学,2016.
    [23]
    魏自民,王世平,席北斗,等.生活垃圾堆肥过程中腐殖质及有机态氮组分的变化[J].环境科学学报,2007,27(2):235-240.
    [24]
    王蕊,邰俊,赵由才,等.餐厨垃圾资源化衍生品的堆肥中试实验[J].环境工程学报,2021,15(9):3012-3019.
    [25]
    苏兰茜,张峰,白亭玉,等.不同钾素处理下菠萝蜜幼苗生长及养分吸收特征[J].热带作物学报,2022,43(3):520-528.
    [26]
    宋晓,刘轶群,李绍伟,等.中量元素Ca、Mg对小麦产量的影响[J].陕西农业科学,2013(6):13-14.
    [27]
    涂淑兰.盐渍土壤深根性植物(梨树)枯死及其原因分析[D].北京:中国农业大学,2006.
    [28]
    SMITH A M,SINGH S,ROSS A B.Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J].Fuel,2016,169:135-145.
    [29]
    ZHANG C,SHAO M S,WU H N,et al.Management and valorization of digestate from food waste via hydrothermal[J].Resources,Conservation & Recycling,2021,171:105639.
    [30]
    ANDRES S,ELENA D,RUBIA M A,et al.Fate of nutrients during hydrothermal treatment of food waste[J].Bioresource Technology,2021,342:125954.
    [31]
    REZA M T,LYNAM J G,UDDIM M H,et al.Hydrothermal carbonization:fate of inorganics[J].Biomass and Bioenergy,2013,49:86-94.
  • Relative Articles

    [1]FEI Tingting, DING Xiaoting, QUE Xiang, LIN Jin, LIN Jian, WANG Ziwei, LIU Jinfu. SPATIOTEMPORAL HETEROGENEITY ANALYSIS OF ENERGY CARBON EMISSION EFFICIENCY IN CHINA BASED ON SBM-DEA AND STWR MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 188-200. doi: 10.13205/j.hjgc.202410022
    [2]ZHENG Haitao, LIU Jianguo, LUO Tao, CHENG Xueling, TAO Bangyi, LIU Cheng, HUANG Kan, SONG Xiaoquan, SHAO Shiyong, CAO Nianwen, XIANG Yan, ZHANG Tianshu, CHEN Bing, LIU Nana, JIN Xiang, LONG Wenrui, LIU Jiaxin, LI Qilong, MA Yubin, WU Lin, JIN Jiangbo, XU Manman, XU Ziqiang, WU Xiaoqing, BI Cuicui, LIU Qing, LI Junmin, HAN Chenghui, HAN Yong, QIN Fuqiang, ZHANG Chengxin, TAN Wei, WANG Bingbing, WANG Mian, CHENG Yin, LI Hao, WANG Guang, YUN Long. RESEARCH PROGRESS ON INTEGRATED THREE-DIMENSIONAL DETECTION TECHNOLOGY FOR ATMOSPHERIC POLLUTION IN COASTAL OCEAN BOUNDARY LAYER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 1-16. doi: 10.13205/j.hjgc.202403001
    [3]CHEN Fang, HU Jun, XU Lizhong, HUANG Weilong, GUO Eryang, RAO Qinghua. SPATIOTEMPORAL AGGREGATION CHANGE PATTERN OF PM2.5 AND O3 CONCENTRATION IN FUJIAN PROVINCE,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 171-182. doi: 10.13205/j.hjgc.202407019
    [4]GUO Yajun, WANG Hualan, LI Mingxuan, LI Ruohan. ANALYSIS OF AIR POLLUTION CHARACTERISTICS IN EXPRESSWAY AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 166-171. doi: 10.13205/j.hjgc.202312020
    [5]ZHANG Qing, ZHAO Liya, GUO Zhiwei, QI Kai. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS OF ATMOSPHERIC POLLUTANTS IN WUHAN FROM 2017 TO 2020[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 82-90. doi: 10.13205/j.hjgc.202302012
    [6]ZUO Penglai, GAO Qiang, ZHANG Yun, HAN Jiahui, TONG Yali, LIU Ping, GAO Jiajia. RESEARCH ON VERIFICATION FOR AIR POLLUTANTS ULTRA-LOW EMISSION TECHNOLOGIES OF COAL-FIRED POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 224-230. doi: 10.13205/j.hjgc.202212030
    [7]XIAO Kai, REN Xue-chang, CHEN Ren-hua. ANALYSIS OF TRANSMISSION CHARACTERISTICS AND POTENTIAL SOURCES OF AIR POLLUTANTS IN JIAYUGUAN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 92-101,109. doi: 10.13205/j.hjgc.202109014
    [8]YU Zhen-dong, XU Wei. CURRENT SITUATION AND COUNTERMEASURES OF AIR POLLUTION EMISSION CONTROL OF COKING INDUSTRY IN THE FENWEI PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 111-116,186. doi: 10.13205/j.hjgc.202101017
    [9]ZHANG Ya-ru, CHEN Yong-jin, GUO Qing-chun, SUN Hao. ANALYSIS ON TEMPO-SPATIAL VARIATION AND PREDICTION OF AIR POLLUTANTS IN JINAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 114-121. doi: 10.13205/j.hjgc.202002016
    [10]ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
    [17]Ding Wenshan Cai Liangcai Shao Bin Ding Fei, . RESEARCH ON AIRPORT AIR POLLUTION STATUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 69-72. doi: 10.13205/j.hjgc.201503014
    [18]Shi Lingling, Li Xiaomin, Liu Jing, Xu Yaxuan, Li Xing. AIR POLLUTION SITUATION OF HENAN PROVINCE AND ITS CONTROLLING MEASURES[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 104-108. doi: 10.13205/j.hjgc.201505022
  • Cited by

    Periodical cited type(1)

    1. 孟德友,蔡河章,王宏. 泉州市2017-2021年大气污染特征及新冠疫情的影响. 环境科学与技术. 2023(08): 66-76 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.1 %FULLTEXT: 9.1 %META: 88.3 %META: 88.3 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.3 %其他: 22.3 %上海: 0.9 %上海: 0.9 %东莞: 0.6 %东莞: 0.6 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %北京: 0.9 %北京: 0.9 %十堰: 0.6 %十堰: 0.6 %南京: 0.3 %南京: 0.3 %合肥: 0.9 %合肥: 0.9 %呼和浩特: 0.3 %呼和浩特: 0.3 %大同: 0.3 %大同: 0.3 %天津: 0.6 %天津: 0.6 %常州: 0.9 %常州: 0.9 %常德: 0.9 %常德: 0.9 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 1.5 %成都: 1.5 %扬州: 0.9 %扬州: 0.9 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.8 %杭州: 2.8 %湖州: 1.9 %湖州: 1.9 %漯河: 3.4 %漯河: 3.4 %芒廷维尤: 25.7 %芒廷维尤: 25.7 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.6 %苏州: 0.6 %蚌埠: 1.5 %蚌埠: 1.5 %衡阳: 0.9 %衡阳: 0.9 %衢州: 1.5 %衢州: 1.5 %西宁: 13.0 %西宁: 13.0 %西安: 0.6 %西安: 0.6 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.5 %运城: 1.5 %连云港: 0.3 %连云港: 0.3 %遵义: 0.3 %遵义: 0.3 %邢台: 0.3 %邢台: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 3.4 %郑州: 3.4 %重庆: 0.3 %重庆: 0.3 %长沙: 0.9 %长沙: 0.9 %阜阳: 0.3 %阜阳: 0.3 %青岛: 0.6 %青岛: 0.6 %其他上海东莞临汾保定北京十堰南京合肥呼和浩特大同天津常州常德平顶山广州张家口成都扬州昆明晋城朝阳杭州湖州漯河芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安贵阳运城连云港遵义邢台邯郸郑州重庆长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(6) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return