Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHU Xin-yu, ZHANG Jie, SUN Xiao-jiao, CHEN Guang-hui, WANG Xiao-xia, ZHANG Pei-yu, QIU Yan-ling. BIOAUGMENTATION OF CORN STALKS FERMENTATION BY ANAEROBIC BENZOATE-DEGRADING BACTERIUM SPOROTOMACULUM SYNTROPHICUM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 75-81. doi: 10.13205/j.hjgc.202205011
Citation: DU Kun, CHI Yong, WANG Lixian. AN EXPERIMENTAL STUDY ON PRODUCTION OF ORGANIC FERTILIZER FROM FOOD WASTE BY HYDROTHERMAL CONVERSION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 162-168. doi: 10.13205/j.hjgc.202308020

AN EXPERIMENTAL STUDY ON PRODUCTION OF ORGANIC FERTILIZER FROM FOOD WASTE BY HYDROTHERMAL CONVERSION

doi: 10.13205/j.hjgc.202308020
  • Received Date: 2022-11-28
    Available Online: 2023-11-15
  • Hydrothermal treatment has the advantages of high efficiency, cleanness, and safety in food waste disposal, which has been widely concerned by global scholars in recent years. In this paper, the experimental study on the production of organic fertilizer from simulated food waste by hydrothermal conversion was carried out at a temperature of 175 to 235 ℃, and a retention time of 20 to 80 min. Results showed that the fertilizer efficiency of food waste after hydrothermal treatment was higher than traditional composting treatment. The content of organic matter and total nutrients were 55.77% to 72.92% and 7.39% to 8.20% respectively, far higher than the limiting values in the Standard of Organic Fertilizer (NY 525—2021). Hydrothermal process could promote the formation of humic acid. With a retention time of 40 min at 205 ℃, the humic acid content reached 21.70%, and the humification index (the ratio of humic to fulvic) could be 1.67, reflecting a very high degree of maturity. Hydrothermal treatment could enhance the migration of salts. Most monovalent metals (potassium and sodium) resided into the liquid phase from the solid phase, while most multivalent metals (calcium, magnesium, and iron) remained integrated within the solid phase.
  • [1]
    国家统计局.中国统计年鉴2017—2021

    [Z/OL].
    [2]
    JIN C X,SUN S Q,YANG D H,et al.Anaerobic digestion:an alternative resource treatment option for food waste in China[J].Science of the Total Environment,2021,779.
    [3]
    毕珠洁,邰俊,陈奕,等.上海市有机垃圾原料特性研究[J].环境卫生工程,2016,24(4):5-7.
    [4]
    毕峰.社区易腐垃圾就地成肥设备中试及其臭气排放特征研究[D].杭州:浙江大学,2020.
    [5]
    周传斌,刘晶茹,王如松,等.城市社区生活垃圾减量化的集成技术研究[J].环境科学,2010,31(11):2768-2773.
    [6]
    姚武,顾燕青,巫阳,等.畜粪堆肥过程中腐殖质形成特征研究进展[J].杭州师范大学学报(自然科学版),2014(5):517-522.
    [7]
    黄华明.厨馀堆肥腐熟度评估分析[J].安徽农业科学,2011,39(3):1475-1478.
    [8]
    陈晨,谭昊,李文祥,等.典型村镇有机废物有机肥产品的品质表征[J].中国沼气,2022,40(2):54-59.
    [9]
    张莹,谷萌,孙捷,等.餐厨垃圾水热炭化产物分配规律及液固产物特性研究[J].中国环境科学,2022,42(1):239-249.
    [10]
    LANG Q Q,ZHANG B,LIU Z G,et al.Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization[J].Journal of Environmental Management,2019,233:440-446.
    [11]
    YANG F,ZHANG S S,CHENG K,et al.A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J].Science of the Total Environment,2019,686:1140-1151.
    [12]
    马小妹.“水热魔法”助力湿垃圾变废为宝——专访上海交通大学环境科学与工程学院教授金放鸣[J].环境教育,2019(8):26-29.
    [13]
    IDOWU I,LI L,FLORA J R V,et al.Hydrothermal carbonization of food waste for nutrient recovery and reuse[J].Waste Management,2017,69:480-491.
    [14]
    LI B,YIN T,UDUGAMA I A,et al.Food waste and the embedded phosphorus footprint in China[J].Journal of Cleaner Production,2020,252(10):119909.
    [15]
    WANG L X,CHI Y,DU K,et al.Hydrothermal treatment of food waste for bio-fertilizer production:formation and regulation of humus substances in hydrochar[J].Science of the Total Environment,2023,14(8):2767-2781.
    [16]
    文启孝.土壤有机质研究法[M].北京:农业出版社,1984:136-148.
    [17]
    SHARMA H B,PANIGRAHI S,DUBEY B K.Food waste hydrothermal carbonization:study on the effects of reaction severities,pelletization and framework development using approaches of the circular economy[J].Bioresource Technology,2021,333:125187.
    [18]
    LIN C.A negative-pressure aeration system for composting food wastes[J].Bioresource Technology,2008,99(16):7651-7656.
    [19]
    舒迪,熊晨,池涌.厨余垃圾水热处理的腐殖化特性研究[J].环境科学学报,2016,36(7):2563-2570.
    [20]
    姚武,顾燕青,巫阳,等.畜粪堆肥过程中腐殖质形成特征研究进展[J].杭州师范大学学报(自然科学版),2014(5):517-522.
    [21]
    王文祥,张雷,李爱民.废弃生物质水热腐殖化产物与介质酸碱性响应关系[J].大连理工大学学报,2022,62(1):9-17.
    [22]
    唐璐.不同堆肥条件对堆肥过程中碳素损失及腐殖质形成的影响研究[D].杭州:杭州师范大学,2016.
    [23]
    魏自民,王世平,席北斗,等.生活垃圾堆肥过程中腐殖质及有机态氮组分的变化[J].环境科学学报,2007,27(2):235-240.
    [24]
    王蕊,邰俊,赵由才,等.餐厨垃圾资源化衍生品的堆肥中试实验[J].环境工程学报,2021,15(9):3012-3019.
    [25]
    苏兰茜,张峰,白亭玉,等.不同钾素处理下菠萝蜜幼苗生长及养分吸收特征[J].热带作物学报,2022,43(3):520-528.
    [26]
    宋晓,刘轶群,李绍伟,等.中量元素Ca、Mg对小麦产量的影响[J].陕西农业科学,2013(6):13-14.
    [27]
    涂淑兰.盐渍土壤深根性植物(梨树)枯死及其原因分析[D].北京:中国农业大学,2006.
    [28]
    SMITH A M,SINGH S,ROSS A B.Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J].Fuel,2016,169:135-145.
    [29]
    ZHANG C,SHAO M S,WU H N,et al.Management and valorization of digestate from food waste via hydrothermal[J].Resources,Conservation & Recycling,2021,171:105639.
    [30]
    ANDRES S,ELENA D,RUBIA M A,et al.Fate of nutrients during hydrothermal treatment of food waste[J].Bioresource Technology,2021,342:125954.
    [31]
    REZA M T,LYNAM J G,UDDIM M H,et al.Hydrothermal carbonization:fate of inorganics[J].Biomass and Bioenergy,2013,49:86-94.
  • Relative Articles

    [1]LI Si, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. CARBON NEUTRAL POTENTIAL OF WHOLE PROCESS OF CO-DIGESTION OF FOOD WASTE AND SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 90-98. doi: 10.13205/j.hjgc.202411010
    [2]YANG Mengxia, SHEN Pengfei, CHEN Xiaohuan. ANALYSIS AND SUGGESTION OF PRODUCT-ORIENTED ANAEROBIC FERMENTATION OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 140-146. doi: 10.13205/j.hjgc.202410017
    [3]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [4]WANG Xinzi, WANG Pan, YANG Xinyu, LI Yingnan, REN Lianhai. EFFECT OF BIOCHAR-nZVI ON PERFORMANCE OF FOOD WASTE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 154-161. doi: 10.13205/j.hjgc.202308019
    [5]ZHANG Lanxia, DU Wei, WANG Yan, XU Zhicheng, YUAN Jing, QI Chuanren, LI Jungang, LUO Wenhai, LI Yangyang, HE Wei, LI Guoxue. MATURITY AND ODOR GAS EMISSIONS DURING CO-COMPOSTING OF KITCHEN WASTE AND AGRICULTURAL AND FORESTRY WASTES WITH DIFFERENT CARBON SOURCES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 105-112,119. doi: 10.13205/j.hjgc.202211015
    [6]MA Dachao, DENG Xiushan, DENG Xiuquan, ZHANG Xuan, LIANG Zhengwu, FENG Qingge. PROCESS PROPERTIES AND MICROBIAL COMMUNITY SUCCESSION DURING THE STATICAL BIO-DRYING OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 106-111,133. doi: 10.13205/j.hjgc.202204015
    [7]ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004
    [8]ZHAO Liya, LIN Peiru, ZHENG Yi, WANG Pan, REN Lianhai. INFLUENCING FACTORS OF SEMI-CONTINUOUS DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 120-126. doi: 10.13205/j.hjgc.202211017
    [9]ZHOU Yang, JIN Baosheng. PYROLYSIS PERFORMANCE AND EVOLVED GAS ANALYSIS OF MIXED SEWAGE SLUDGE CONTAINING KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 80-87,175. doi: 10.13205/j.hjgc.202210011
    [10]YANG Guodong, LAN Tian, SONG Mengzhu, DU Yufeng, LIU Mengdan, SONG Yingchun, JIANG Jianguo. ENGINEERING APPLICATION OF A DRY-WET PRESS SEPARATION-HYDROTHERMAL CARBONIZATION TECHNOLOGY FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 53-60. doi: 10.13205/j.hjgc.202212008
    [11]REN An-dong, ZHENG Yi, SUN Tian-zi, ZHAO Li-ya, WANG Pan, REN Lian-hai. EFFECT OF SLURRY RECIRCULATION TIME ON ANAEROBIC DIGESTION OF KITCHEN WASTE WITH HIGH SOLID CONTENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 159-165,140. doi: 10.13205/j.hjgc.202112024
    [12]GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
    [13]DENG Yun, WANG Fei. EXTRACTION OF HUMIC ACID AND BLACK CARBON AND THEIR ADSORPTION BEHAVIORS FOR PHENANTHRENE AND PYRENE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 88-92,107. doi: 10.13205/j.hjgc.202108011
    [14]XU Yi-wen, YANG Guo-dong, WANG Feng-xia, CHEN Hui-ting, HUANG Ai-lian, LIU Li-ting, JIANG Yan-hang, SONG Ying-chun, JIANG Jian-guo. EFFECTS OF PRETREATMENTS AND SUBSTRATE COMPOSITIONS ON ANAEROBIC DIGESTION OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 100-106. doi: 10.13205/j.hjgc.202104016
    [15]LI Tong, WANG Pan, CHEN Xi-teng, ZHAO Ze-xi, MA Li-juan, REN Lian-hai. DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE AND FOOD WASTE AND ALLEVIATION OF ACID INHIBITION BY ACTIVATED CARBON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 213-218. doi: 10.13205/j.hjgc.202009034
    [16]ZHAO Jia-qi, FAN Xiao-dan, QIU Chun-sheng, WANG Chen-chen, LIU Nan-nan, WANG Dong, WANG Shao-po, SUN Li-ping. ANALYSIS ON DIFFICULTY AND CONTROL STRATEGY OF ANAEROBIC DIGESTION TREATMENT OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 143-148. doi: 10.13205/j.hjgc.202012024
    [17]CHEN Jun-wei, LI Li-li, FANG Zhi-huang, YE Ling-fen, ZHENG Jia-hui, WANG Fei-feng. DEGRADATION OF HUMIC ACID IN WATER BY ULTRAVIOLET PHOTOCATALYSIS OF TiO2/GO COMPOSITE NANOMATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 89-95. doi: 10.13205/j.hjgc.202008015
    [18]ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006
    [19]ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017
    [20]GUO Tian-tian, ZHANG Han, AN Wen-gang, DUAN Yu-tong, FAN Wei, HUO Ming-xin. COMPOSITIONAL STRUCTRE CHANGES AND CHARACTERISTICS OF DISSOLVED ORGANIC MATTERS DURING ARTIFICIAL GROUNDWATER RECHARGE WITH RECLAIMED WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 126-131,107. doi: 10.13205/j.hjgc.202006020
  • Cited by

    Periodical cited type(1)

    1. 王德生,贾伟建. 青岛某水厂建设工程方案设计探讨. 节能与环保. 2022(07): 34-36 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 85.0 %META: 85.0 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.4 %其他: 16.4 %其他: 0.5 %其他: 0.5 %China: 0.5 %China: 0.5 %上海: 3.6 %上海: 3.6 %保定: 0.5 %保定: 0.5 %兰州: 0.5 %兰州: 0.5 %北京: 0.5 %北京: 0.5 %南京: 2.3 %南京: 2.3 %台州: 1.4 %台州: 1.4 %哈尔滨: 0.5 %哈尔滨: 0.5 %大同: 1.4 %大同: 1.4 %天津: 0.9 %天津: 0.9 %巴音郭楞: 0.5 %巴音郭楞: 0.5 %常州: 0.5 %常州: 0.5 %常德: 0.9 %常德: 0.9 %广州: 1.8 %广州: 1.8 %张家口: 2.3 %张家口: 2.3 %徐州: 0.5 %徐州: 0.5 %德州: 0.5 %德州: 0.5 %德黑兰: 1.8 %德黑兰: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 0.5 %扬州: 0.5 %无锡: 0.9 %无锡: 0.9 %昆明: 1.8 %昆明: 1.8 %晋城: 0.5 %晋城: 0.5 %杭州: 1.4 %杭州: 1.4 %武汉: 0.9 %武汉: 0.9 %泸州: 2.7 %泸州: 2.7 %深圳: 0.9 %深圳: 0.9 %漯河: 3.6 %漯河: 3.6 %焦作: 1.8 %焦作: 1.8 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.9 %福州: 0.9 %芒廷维尤: 14.5 %芒廷维尤: 14.5 %芝加哥: 4.1 %芝加哥: 4.1 %西宁: 10.0 %西宁: 10.0 %贵阳: 7.3 %贵阳: 7.3 %运城: 2.3 %运城: 2.3 %连云港: 2.7 %连云港: 2.7 %遵义: 0.5 %遵义: 0.5 %邢台: 0.5 %邢台: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 0.9 %重庆: 0.9 %长沙: 0.9 %长沙: 0.9 %其他其他China上海保定兰州北京南京台州哈尔滨大同天津巴音郭楞常州常德广州张家口徐州德州德黑兰成都扬州无锡昆明晋城杭州武汉泸州深圳漯河焦作石家庄福州芒廷维尤芝加哥西宁贵阳运城连云港遵义邢台邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (187) PDF downloads(6) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return