Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Yue Bao Zhang Yaofeng, . THE APPLICATION AND PRACTICE OF TWO-PHASE SLUDGE DRYING TECHNOLOGY INCHINA'S MUNICIPAL SLUDGE DISPOSAL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 88-91. doi: 10.13205/j.hjgc.201502019
Citation: LU Ailing, ZHU Dongyun, ZHANG Hong, CAO Han, ZHANG Jing. EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 176-180. doi: 10.13205/j.hjgc.202308022

EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR

doi: 10.13205/j.hjgc.202308022
  • Received Date: 2022-08-04
    Available Online: 2023-11-15
  • Urease induced calcite precipitation (EICP), a new biomimetic mineralization technology, shows great potential in repairing heavy metal contaminated soil. The technical routine of combining EICP with biochar to solidify Pb in contaminated soil was carried out, and the solidification effect was evaluated and the mechanism was discussed by toxicity leaching and calcium carbonate content test. The result showed that EICP could effectively solidify Pb, and the solidification rate was the highest when the amount of EICP treatment reagent was 6.6%, and the solidification rate increased with the increase of calcium carbonate content. Compared with EICP applied alone, EICP combined with biochar significantly improved the curing effect of lead-contaminated soil, and the incorporation amount of biochar was 6.6%, showing the highest solidification rate. The mechanism of EICP combined with biochar to improve the Pb solidification effect, was that the biochar is alkaline and can adsorb Pb on a large specific surface area, and the numerous tiny pores of the biochar can provide a site for the EICP mineralization reaction. This study provided new ideas and experimental guidance for EICP remediation of heavy metal contaminated soil.
  • [1]
    孙朋成,黄占斌,唐可,等.土壤重金属污染治理的化学固化研究进展[J].环境工程,2014,32(1):158-161.
    [2]
    刘伟,张永波,贾亚敏.重金属污染农田植物修复及强化措施研究进展[J].环境工程,2019,37(5):29-33

    ,44.
    [3]
    郑太辉,王凌云,陈晓安.矿区重金属植被修复研究进展和趋势[J].环境工程,2015,33(6):148-152.
    [4]
    HAMDAM N M.Applications of enzyme induced carbonate precipitation (EICP) for soil improvement[D].State of Arizona:Arizona State University,2015.
    [5]
    MUGWAR A J,HARBOTTLE M J.Toxicity effects on metal sequestration by microbially-induced carbonate precipitation[J].Journal of Hazardous Materials,2016,314:237-248.
    [6]
    WANG L,CHENG W C,XUE,Z F,et al.Effects of the Urease Concentration and Calcium Source on Enzyme-Induced Carbonate Precipitation for Lead Remediation[J].Frontiers in Chemistry,2022,10:892090.
    [7]
    KUMARI D,QIAN X Y,PAN X L,et al.Chapter two-microbially-induced carbonate precipitation for immobilization of toxic metals[J].In Advances in Applied Microbiology,2016,94:79-108.
    [8]
    朱德强.含方解石物质修复镉污染土壤及机制初探[D].沈阳:沈阳农业大学,2016.
    [9]
    MOGHAL A,LATEEF M,MOHAMMED S,et al.Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions[J].Sustainability,2020,12(17):7019.
    [10]
    LI W L,ZHANG Y H,ACHAL V.Mechanisms of cadmium retention on enzyme-induced carbonate precipitation (EICP) of Ca/Mg:nucleation,chemisorption,and co-precipitation[J].Journal of Environmental Chemical Engineering,2022,10 (3).
    [11]
    边汉亮,张旭钢,韩一,等.大豆脲酶对Zn2+污染土的修复试验研究[J].工业建筑,2022,52(11):67-70

    ,66.
    [12]
    AHENKORAH I,RAHMAN M M,KARIM M R,et al.Enzyme induced calcium carbonate precipitation and its engineering application:a systematic review and meta-analysis[J].Construction and Building Materials,2021:308.
    [13]
    LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota:a review[J].Soil Biology & Biochemistry,2011,43(9):1812-1836.
    [14]
    杨京民,GAHONZIRE B,姜娜,等.镉、砷复合污染土壤钝化修复研究进展[J].环境污染与防治,2021,43(9):1189-1195

    ,1200.
    [15]
    PENIDO E S,MARTINS G C,MENDES T B M,et al.Combining biochar and sewage sludge for immobilization of heavy metals in mining soils[J].Ecotoxicology and Environmental Safety,2019,172:326-333.
    [16]
    荆延德,巩晨,孙小银,等.棉花、花生秸秆生物炭对棕壤中 Cu(Ⅱ)运移的影响[J].水土保持通报,2016,36(3):50-55.
    [17]
    王苗苗,陈明,郑小俊,等.生物炭在土壤重金属污染修复的应用研究进展[J].应用化工,2022,51(6):1729-1735

    ,1740.
    [18]
    BEESLEY L,MORENO-JIMENEZ E,GOMEZ-EYLES J L.Effects of biochar and green waste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J].Environmental Pollution,2010,158(6):2282-2287.
    [19]
    刘孝利,曾昭霞,陈求稳,等.生物炭与石灰添加对稻田土壤重金属面源负荷影响[J].水利学报,2014,45(6):682-690.
    [20]
    ALMAJED A,AHMAD M,USMAN A R A,et al.Fabrication of sand-based novel adsorbents embedded with biochar or binding agents via calcite precipitation for sulfathiazole scavenging[J].Journal of Hazardous Materials,2021,405:124249.
    [21]
    ALMAJED A.Enzyme induced cementation of biochar-intercalated soil:fabrication and characterization[J].Arabian Journal of Geosciences,2019,12(13).
    [22]
    冯亦立,王家源.燃煤电厂重金属排放与周边土壤重金属污染评价[J].环境污染与防治,2022,44(4):510-514.
    [23]
    董瑾,刘效彬.EICP技术改良传统三合土性能研究[J/OL].建筑材料学报:1-11.[2022-06-29

    ].http://kns.cnki.net/kcms/detail/31.1764.TU.20210802.1708.004.html.
    [24]
    KRAJEWSKA B.Urease-aided calcium carbonate mineralization for engineering applications:a review[J].Journal of Advanced Research,2018,13:59-67.
    [25]
    NAM I H,ROH S B,PARK M J,et al.Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract[J].Catena,2016,136:53-58.
    [26]
    胡朋成,尹娟,魏小东,等.不同水氮处理对马铃薯品质及土壤脲酶活性的影响[J].江苏农业科学,2022,50(6):87-92.
    [27]
    CHEN M J,LI Y F,JIANG X R,et al.Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology[J].Journal of Hazardous Materials,2021,411:125103.
    [28]
    ZHU X J,KUMARI D,HUANG M S,et al.Biosynthesis of CdS nanoparticles through microbial induced calcite precipitation[J].Materials & Design,2016,98:209-214.
    [29]
    常道琴,宋乃平,岳健敏,等.微生物诱导碳酸钙沉淀对干旱半干旱区铜尾矿污染治理效果[J].水土保持学报,2022,36(4):365-374.
    [30]
    王红,夏雯,卢平,等.生物炭对土壤中重金属铅和锌的吸附特性[J].环境科学,2017,38(9):3944-3952.
    [31]
    魏延超.土壤重金属镍锡铅复合污染修复剂的研制[D].呼和浩特:内蒙古大学,2020.
    [32]
    吴敏,高玉峰,何稼,等.大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J].岩土工程学报,2020,42(10):1914-1921.
    [33]
    JIM H.Characterization of microbial life colonizing biochar and biochar amended soils[D].Ithaca:Cornell University,2010.
  • Relative Articles

    [1]TIAN Yuan, WU Zhijun, GU Qingbao, XU Duanping, FENG Xiaojie. RESEARCH ON METHOD SELECTION OF POLLUTED SITE REMEDIATION TECHNOLOGY BASED ON AHP-Entropy-TOPSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 114-121. doi: 10.13205/j.hjgc.202405015
    [2]CHEN Yuntao, XIAO Yao, WANG Jiannan, GAO Zhongshuai, CUI Mei, HUANG Renliang. SYNTHESIS OF ORGANIC-INORGANIC COMPOSITE CURING AGENT AND ITS SOLIDIFICATION EFFECT ON HEAVY METAL CONTAMINATED DREDGED SILT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 82-91. doi: 10.13205/j.hjgc.202403010
    [3]WANG Xingming, WANG Ying, FAN Tingyu, CHU Zhaoxia, DONG Zhongbing, DONG Peng. PATHWAYS OF HEAVY METALS ABSORPTION BY EARTHWORMS IN SLUDGE VERMI COMPOSTING ENHANCED BY RICE HUSK CHARCOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 147-154. doi: 10.13205/j.hjgc.202410018
    [4]LI Zishan, HU Zhiwen, MEI Chuang, BAI Jinjing, ZENG Yan, XIAO Rongbo, WANG Peng, HUANG Fei. EFFECT OF COMBINATION OF RICE STRAW BIOCHAR AND BACILLUS CEREUS ON TRANSFORMATION OF SOIL HEAVY METAL SPECIATIONS AND MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 165-176. doi: 10.13205/j.hjgc.202410020
    [5]LIU Wei, XU Zhiqiang, LI Hongxing, CAO Chenjie, DONG Wen, FENG Minquan, QI Mingyang, LI Jiangbo, KOU Xiaomei, SHAO Tian. IMMOBILIZATION EFFECT OF SLUDGE BIOCHAR ON HEAVY METALS IN CONTAMINATED DREDGED SEDIMENT IN RIVER CHANNELS IN MINING REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 32-39. doi: 10.13205/j.hjgc.202402004
    [6]WANG Yi, ZHOU Min, XIANG Yuwei, DONG Yiqie, LI Shiyao, HOU Haobo. REMISSION OF MOISTURE LOSS AND CRACKING OF BOTTOM ASH BASED GEOPOLYMER-SOIL SOLIDIFIED BLOCKS BY ADDING COCONUT FIBER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 106-112,180. doi: 10.13205/j.hjgc.202302015
    [7]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [8]LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018
    [9]GUO Lin, CAO Shumiao, YUAN Xunfeng, LIU Jun. THE METHOD OF HEAVY METAL CONTAMINATED SOIL IN TAILINGS POND BASED ON PHYTO-ELECTROKINETIC OF SIMULATED REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 152-158. doi: 10.13205/j.hjgc.202211021
    [10]XU Mei-li, CHEN Yong-guang, XIAO Rong-bo, MEI Chuang, DAI Wei-jie, WANG Peng, HUANG Fei. PROGRESS IN INFLUENTIAL MECHANISMS OF BIOCHAR ON AVAILABLE HEAVY METALS IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 165-172,226. doi: 10.13205/j.hjgc.202108023
    [11]DAI Liang, ZHAO Wei-fan, ZHANG Hong-wei, HAN Tao, ZHANG Kang. RESEARCH PROGRESS ON ADSORPTION OF HEAVY METALS BY SEWAGE SLUDGE-BASED BIOCHAR IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 70-77. doi: 10.13205/j.hjgc.202012013
    [12]WU Rui-ping. EFFECT OF PYROLYSIS TEMPERATURE ON BIOCHAR ENHANCED TREATMENT OF CADMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 241-246. doi: 10.13205/j.hjgc.202009039
    [13]YE Chun-mei, WU Jian-qiang, HUANG Shen-fa, SHA Chen-yan, XU Zhi-hao, WANG Jing, ZHOU Dong, SUN Hai-tong, HAN Li-ming. SOLIDIFICATION/STABILIZATION OF HEAVY METAL CONTAMINATED SEDIMENT BY COMPOUD MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 125-130,51. doi: 10.13205/j.hjgc.202008021
    [14]LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032
    [15]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [16]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [18]Liu Zengjun, Xia Xu, Zhang Xu, Li Guanghe, Jiang Lin. STUDY OF REMEDIATION AND LONG-TERM EFFECT OF AGENTS ON CHROMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 160-163. doi: 10.13205/j.hjgc.201502036
    [19]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
    [20]SIMULATION EXPERIMENT OF SINTERING CEMENT USING HEAVY METAL CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 91-94. doi: 10.13205/j.hjgc.201412016
  • Cited by

    Periodical cited type(3)

    1. 郑蔚,刘大翔,张琳瑶,杨悦舒,丁瑜,夏栋,肖海,许文年. 不同类型外掺料对植被混凝土抗冻性能的影响. 金属矿山. 2025(01): 300-308 .
    2. 李永伟. 软土地区深基坑降水地表重金属污染对周边环境的影响研究. 环境科学与管理. 2024(04): 66-70+143 .
    3. 谭慧明,赵祥运,徐烨. 豆皮脲酶诱导碳酸盐沉淀固化砂土抗风蚀性能试验研究. 防灾减灾工程学报. 2024(06): 1408-1417+1427 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 84.9 %META: 84.9 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.8 %其他: 21.8 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %San Lorenzo: 0.3 %San Lorenzo: 0.3 %上海: 0.6 %上海: 0.6 %东莞: 1.8 %东莞: 1.8 %保定: 0.3 %保定: 0.3 %北京: 3.6 %北京: 3.6 %十堰: 0.6 %十堰: 0.6 %南京: 1.8 %南京: 1.8 %南通: 0.6 %南通: 0.6 %台州: 1.2 %台州: 1.2 %大同: 0.6 %大同: 0.6 %天津: 1.5 %天津: 1.5 %安康: 0.3 %安康: 0.3 %宜昌: 0.6 %宜昌: 0.6 %宜春: 0.3 %宜春: 0.3 %宣城: 0.6 %宣城: 0.6 %常州: 0.6 %常州: 0.6 %常德: 0.6 %常德: 0.6 %广州: 1.2 %广州: 1.2 %开封: 1.2 %开封: 1.2 %弗吉: 0.3 %弗吉: 0.3 %张家口: 2.1 %张家口: 2.1 %成都: 2.4 %成都: 2.4 %扬州: 1.5 %扬州: 1.5 %昆明: 1.5 %昆明: 1.5 %晋城: 0.3 %晋城: 0.3 %杭州: 0.9 %杭州: 0.9 %武汉: 3.3 %武汉: 3.3 %深圳: 0.9 %深圳: 0.9 %温州: 0.6 %温州: 0.6 %湖州: 0.3 %湖州: 0.3 %漯河: 4.5 %漯河: 4.5 %濮阳: 0.6 %濮阳: 0.6 %福州: 0.3 %福州: 0.3 %芒廷维尤: 14.8 %芒廷维尤: 14.8 %芝加哥: 4.2 %芝加哥: 4.2 %衢州: 0.6 %衢州: 0.6 %西宁: 9.1 %西宁: 9.1 %西安: 1.8 %西安: 1.8 %许昌: 0.3 %许昌: 0.3 %贵阳: 0.9 %贵阳: 0.9 %运城: 1.5 %运城: 1.5 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.6 %郑州: 0.6 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.9 %重庆: 0.9 %长沙: 1.2 %长沙: 1.2 %阜新: 0.3 %阜新: 0.3 %青岛: 0.3 %青岛: 0.3 %鹤壁: 0.6 %鹤壁: 0.6 %其他其他ChinaSan Lorenzo上海东莞保定北京十堰南京南通台州大同天津安康宜昌宜春宣城常州常德广州开封弗吉张家口成都扬州昆明晋城杭州武汉深圳温州湖州漯河濮阳福州芒廷维尤芝加哥衢州西宁西安许昌贵阳运城遵义邯郸郑州鄂州重庆长沙阜新青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (279) PDF downloads(6) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return