Citation: | YAN Xiuyi, GU Zhibin, LI Zhimeng, QIN Yu, DENG Meng. ARENIC IMMOBILIZATION IN SOIL USING IRON/TITANIUM COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 181-187. doi: 10.13205/j.hjgc.202308023 |
[1] |
李芙荣.土壤修复技术研究综述[J].清洗世界,2021,37(1):125-126.
|
[2] |
HUANG Y,WANG L Y,WANG W J,et al.Current status of agricultural soil pollution by heavy metals in China:a meta-analysis[J].Science of the Total Environment,2019,651:3034-3042.
|
[3] |
龙良俊,宋雪婷,潘宝宇,等.砷污染土壤修复技术综述[J].应用化工,2020,49(10):2649-2653.
|
[4] |
陈婷,朱志良.铁基水处理材料除砷技术的研究进展[J].化学通报,2018,81(10):880-889.
|
[5] |
HONG J,ZHU Z L,LU H T,et al.2014.Synthesis and arsenic adsorption performances of ferric-based layered double hydroxide with α-alanine intercalation[J].Chemical Engineering Journal,252:267-274.
|
[6] |
ZHANG G S,QU J H,LIU H J,et al.Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal[J].Water Research.2007,41(9):1921-1928.
|
[7] |
DAHL M,LIU Y D,YIN Y D.Composite titanium dioxide nanomaterials[J].Chemical reviews,2014,114:9853-9889.
|
[8] |
邓敏.铁钛复合氧化物及其砷吸附性能研究[D].厦门:厦门大学,2019.
|
[9] |
NIU H Y,WANG J M,SHI Y L,et al.Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method[J].Microporous Mesoporous Mater,2009,122:28-35.
|
[10] |
YANG H,LIN W Y,RAJESHWAR K.Homogeneous and heterogeneous photocatalytic reactions involving As(Ⅲ) and As(Ⅴ) species in aqueous media[J].Journal of Photochemistry and Photobiology A:Chemistry,1999,123(1/2/3):137-143.
|
[11] |
SHARMA V K,DUTTA P K,RAY A K.Review of kinetics of chemical and photocatalytical oxidation of arsenic (Ⅲ) as influenced by pH[J].Journal of Environmental Science and Health,Part A,2007,42(7):997-1004.
|
[12] |
MOLL J,KLINGENFUSS F,WIDMER F,et al.Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass[J].Soil Biology & Biochemistry,2017,111:85-93.
|
[13] |
ZHAI Y J,CHEN L H,LIU G,et al.Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration[J].Science of the Total Environment,2021,773:144895.
|
[14] |
张伟.新型复合铁钛锰吸附剂的研制及其除砷效能与机制研究[D].哈尔滨:哈尔滨工业大学,2019.
|
[15] |
邓敏.铁钛复合氧化物及其砷吸附性能研究[D].厦门:厦门大学,2019.
|
[16] |
汪赛奇.Fe-Ti复合氧化物的制备、表征及其对饮用水中As(Ⅴ)的吸附研究[D].合肥:安徽建筑大学,2014.
|
[17] |
万祥.湖南某矿区土壤砷污染特征及化学固定修复实验研究[D].北京:北京化工大学,2017.
|
[18] |
SU B L,LIN J J,OWENS G,et al.Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of As species in contaminated soil[J].Environmental Pollution,2020,258(1):113668.
|
[19] |
陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002(3):207-210.
|
[20] |
ALIDOKHT L,ANASTOPOULOS I,NTARLAGIANNIS D,et al.Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil[J].Journal of Environmental Chemical Engineering,2021,9:105533.
|
[21] |
SAHU U K,SAHU S,MAHAPATRA S S,et al.Synthesis and characterization of magnetic bio-adsorbent developed from Aegle marmelos leaves for removal of As(Ⅴ) from aqueous solutions[J].Environmental Science and Pollution Research,2019,26(1):946-958.
|
[22] |
GUGUSHE A S,NQOMBOLO A,NOMNGONGO P N.Application of response surface methodology and desirability function in the optimization of adsorptive remediation of arsenic from acid mine drainage using magnetic nanocomposite:equilibrium studies and application to real samples[J].Molecules,2019,24(9):1792.
|
[23] |
SHAIKH W A,ALAM M A,ALAM M O,et al.Enhanced aqueous phase arsenic removal by a biochar based iron nanocomposite[J].Environmental Technology & Innovation,2020,19:100936.
|
[24] |
YANG J J,MA T X,LI X Q,et al.Removal of heavy metals and metalloids by amino-modified biochar supporting nanoscale zero-valent Iron[J].Journal of Environmental Quality,2018,47(5):1196-1204.
|
[25] |
SHERLALA A,RAMAN A,BELLO M,et al.Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite[J].Journal of Environmental Management,2019,246:547-556.
|
[26] |
VICKERS N J.Animal communication:when i’m calling you,will you answer too[J].Current Biology,2017,27(14):713-715.
|
[27] |
LIU P P,LIANG Q W,LUO H J,et al.Synthesis of nano-scale zero-valent iron-reduced graphene oxide-silica nano-composites for the efficient removal of arsenic from aqueous solutions[J].Environmental Science and Pollution Research,2019,26(32):33507-33516.
|
[28] |
DENG M,WU X D,ZHU A M,et al.Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal[J].Journal of Environmental Management,2019,237:63-74.
|
[1] | LI Geng, LI Haibo, LI Yinghua, CHEN Xi. SOLIDIFICATION/STABILIZATION OF As IN SOIL USING BIOCHAR LOADED WITH FERRIC MANGANESE BINARY OXIDES(FMBO)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 118-125. doi: 10.13205/j.hjgc.202203018 |
[2] | LV Zijuan, WANG Huawei, WU Yajing, SUN Yingjie, WANG Yanan. EFFECT OF PHASE TRANSFORMATION OF NANO-ZERO-VALENT IRON ON STABILIZATION AND POTENTIAL TOXICITY OF ARSENIC IN CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 24-31. doi: 10.13205/j.hjgc.202203005 |
[3] | GUO Jiangshan, GU Weihua, BAI Jianfeng, DONG Bin, ZHUANG Xuning, ZHAO Jing, WANG Jingwei. EFFECT OF CO-PYROLYSIS OF SEWAGE SLUDGE AND Ca(H2PO4)2 ON RESIDUE CHARACTERISTIC AND CHROMIUM STABILITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 45-50,88. doi: 10.13205/j.hjgc.202203008 |
[4] | ZHAO Bo, ZHONG Daoxu, ZHANG Yaping, WU Longhua, ZHAO Jie. INCINERATION DISPOSAL OF HYPERACCUMULATOR SEDUM PLUMBIZINCICOLA AND LEACHING TOXICITY OF HEAVY METALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 93-99. doi: 10.13205/j.hjgc.202202015 |
[5] | CUI Can, REN Fumin, HU Shuxin, JIA Jinming, MA Li, SI Han, GUO Zhanghong, LU Tong, LIU Junshi, LIU Guotao, ZHANG Boyu. ENVIRONMENTAL CONTAMINATION RISK ANALYSIS OF CONSTRUCTION WASTE AND ITS RECYCLED PRODUCTS IN SHANGQIU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 191-196,149. doi: 10.13205/j.hjgc.202208027 |
[6] | GUO Peng-fei, DONG Zi-yi, WANG Ying, FU Jun, WANG Jing-gang, LIU Xian-jing. EFFECTS OF DIFFERENT DOSING METHODS OF SLOW-RELEASE OXYGEN COMPOSITE MATERIALS ON THE MIGRATION OF POLLUTANTS AT THE SEDIMENT-WATER INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 1-8. doi: 10.13205/j.hjgc.202105001 |
[7] | SONG Meng-zhu, KAEWMEE Pat-charanat, JO Giun, TAKAHASHI Fumita-ke. SYNTHESIS AND PROPERTIES OF POLYMER MODIFIED FLY ASH BASED POROUS COMPOSITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 27-33,95. doi: 10.13205/j.hjgc.202008005 |
[8] | FANG Wei, JIANG Xian-ying, LI Jing-shi, LUO Qi-jin. ADSORPTION CAPABILITY OF GRAPHENE/SiO2-POLYPYRROLE COMPOSITES FOR Cr(Ⅵ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 53-59. doi: 10.13205/j.hjgc.202011009 |
[9] | WANG Yu, ZHUANG Xu-ning, MAO Shao-hua, GU Wei-hua, BAI Jian-feng. ANALYSIS OF TOXIC AND HARMFUL METALS CONTENT AND ECOLOGICAL RISK IN WASTE LCD PANELS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 117-121. doi: 10.13205/j.hjgc.202001018 |
[10] | YU Bing-bing, YAN Xiang-hua, WANG Xing-run, ZHANG Yu-xiu. EFFECT OF DIFFERENT IMMOBILIZING MATERIALS ON ZN, CD AND AS IN LEAD-ZINC SMELTING SLAGS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 222-228,254. doi: 10.13205/j.hjgc.202008037 |
[15] | Ye Ming Wang Gongzheng Su Guimei Mo Runyang Hu Jing, . PREPARATION AND APPLICATION OF FUNCTIONAL MAGNETIC NANOCOMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 66-71. doi: 10.13205/j.hjgc.201510015 |
[17] | Luo Ting, Jiang Zhenmao, Ren Zhijie, Zhou Meizhu, Zhou Hongguang. PREPARATION AND PERFORMANCE OF RESIN BASED NANOSCALE ZERO VALENT IRON COMPOSITES FOR REMOVAL OF Pb( Ⅱ) IN WATER SOLUTION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 1-4. doi: 10.13205/j.hjgc.201505001 |