Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Dan-dan, WANG Bing, WANG Bo. TREATMENT OF HIGH CONCENTRATION SULFIDE WASTEWATER BY SODIUM SULFITE OXIDATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 115-120. doi: 10.13205/j.hjgc.202006018
Citation: GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030

RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS

doi: 10.13205/j.hjgc.202308030
  • Received Date: 2022-08-20
    Available Online: 2023-11-15
  • For the existing soil pollution risk assessment methods are not closely related to soil and agricultural products pollution, and have poor applicability in different scenarios, a collaborative assessment method of heavy metal pollution risk in cultivated land based on multi-factor fusion was proposed, and the effectiveness of the method was verified by taking the risk assessment of heavy metal pollution in cultivated land soil in a county in southern China as an example. Based on soil environmental quality standards, soil background values, toxicity, and physical and chemical properties of heavy metal elements, the soil load capacity weight index was proposed. The heavy metal elements with the greatest ecological hazard in composite pollution were screened out, and the regional soil pollution risk under different scenarios was evaluated by the comprehensive evaluation index, and then the risk levels were determined by combining the pollution of agricultural products to build a collaborative risk assessment framework. The results showed that the soil pollution risk in the study area was divided into four levels, the negligible risk area accounted for 8.23% of the total cultivated land area, the low risk accounted for 17.45%, the medium risk and high risk areas accounted for 57.18% and 17.14%, respectively, the dominant heavy metal elements of soil pollution were Cd and Hg, and the medium and high pollution risk areas were mainly distributed in the central and eastern parts of the study area, and agricultural products had strong cadmium enrichment capacity. Compared with the geo-accumulation index method and the potential ecological hazard index method, the comprehensive evaluation index method proposed in this paper can automatically evaluate the risk of multi-element composite pollution, and effectively avoid the problem of unreasonable evaluation results caused by improper setting of the weight of each evaluation index.
  • [1]
    夏新,田志仁,姜晓旭,等.土壤环境采样质量监督体系的设计与实践[J].环境监控与预警,2019,11(4):1-4.
    [2]
    夏家淇.农用地块土壤污染分类标准制订方法探讨[J].生态与农村环境学报,2019,35(3):405-408.
    [3]
    李一蒙,马建华,刘德新,等.开封城市土壤重金属污染及潜在生态风险评价[J].环境科学,2015,36(3):1037-1044.
    [4]
    李航,谭科艳,张隆隆,等.土壤重金属地球化学特征及环境评价:以张北县二台镇为例[J/OL].地球学报:1-11[2022-05-03

    ].http://kns.cnki.Net/kcms/detail/11.3474.P.20220421.0947.002.html.
    [5]
    郭晗,孙英君,王绪璐,等.县域城市土壤重金属空间分布特征及来源解析[J].环境科学学报,2022,42(1):287-297.
    [6]
    郭森,肖捷颖,张依章,等.环南四湖区地下水中重金属健康风险评价[J].环境工程,2019,37(11):59-64.
    [7]
    窦韦强,安毅,秦莉,等.农田土壤重金属垂直分布迁移特征及生态风险评价[J].环境工程,2021,39(2):166-172.
    [8]
    孟婷婷,刘金宝,董浩,等.城市绿地不同管理方式土壤重金属污染及生态风险评价[J/OL].环境工程:1-9[2022-12-29

    ].http://kns.cnki.net/kcms/detail/11.2097.x.20220623.1337.002.html.
    [9]
    XU X B,WANG T T,SUN M X,et al.Management principles for heavy metal contaminated farmland based on ecological risk:a case study in the pilot area of Hunan province,China[J].Science of the Total Environment,2019,684:537-547.
    [10]
    LIU B Q,WANG J,XU M,et al.Spatial distribution,source apportionment and ecological risk assessment of heavy metals in the sediments of Haizhou Bay national ocean park,China[J].Marine Pollution Bulletin,2019,149:110651.
    [11]
    陈明,蔡青云,徐慧,等.水体沉积物重金属污染风险评价研究进展[J].生态环境学报,2015,24(6):1069-1074.
    [12]
    应蓉蓉,张晓雨,孔令雅,等.农用地土壤环境质量评价与类别划分研究[J].生态与农村环境学报,2020,36(1):18-25.
    [13]
    国家环境保护总局.土壤环境监测技术规范:HJ/T 166—2004[S].北京.2004.
    [14]
    MULLER G.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,1969,2(3):108-118.
    [15]
    郑飞,郭欣,汤名扬,等.白洋淀及周边土壤重金属的分布特征及生态风险评估[J/OL].环境科学:1-14[2022-04-28

    [16]
    左文萍,黎清华,张彦鹏,等.火山岩风化区农田重金属污染及健康风险评价:以海口江东新区为例[J/OL].地球科学:1-15[2022-04-28

    ].http://kns.cnki.net/kcms/detail/42.1874.P.20220321.2019.006.html.
    [17]
    刘子赫,孟瑞红,代辉祥,等.基于改进地累积指数法的沉积物重金属污染评价[J].农业环境科学学报,2019,38(9):2157-2164.
    [18]
    倪天翔,杨庆,王俊豪,等.一种新内梅罗指数法的修正方法及应用[J].水文地质工程地质,2018,45(2):171-174.
    [19]
    BI S,YANG Y,XU C,et al.Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China[J].Marine Pollution Bulletin,2017:S0025326X17304939.
    [20]
    郭志娟,周亚龙,王乔林,等.雄安新区土壤重金属污染特征及健康风险[J].中国环境科学,2021,41(1):431-441.
    [21]
    于常武,王琳,高超.水体沉积物重金属污染地累积指数法和分级提取评价技术的差异[J].辽宁工业大学学报(自然科学版),2015,35(3):196-199.
    [22]
    张秀,易廷辉.城市土壤重金属评价标准限值探讨[J].科学咨询,2008(13):74-75.
    [23]
    孙华,谢丽,张金婷,等.基于改进内梅罗指数法的棕(褐)地周边土壤重金属污染评价[J].环境保护科学,2018,44(2):98-102.
    [24]
    王玉军,刘存,周东美,等.一种农田土壤重金属影响评价的新方法:土壤和农产品综合质量指数法[J].农业环境科学学报,2016,35(7):1225-1232.
    [25]
    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [26]
    窦韦强,安毅,秦莉,等.稻米镉的生物富集系数与其影响因素的量化关系[J].土壤,2021,53(4):788-793.
    [27]
    王佛鹏,肖乃川,周浪,等.桂西南地球化学异常区农田重金属空间分布特征及污染评价[J].环境科学,2020,41(2):876-885.
    [28]
    生态环境部.土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618—2018[S].2018
    [29]
    郭志娟,周亚龙,杨峥,等.雄安新区土壤重金属地球化学监测关键问题探讨[J].环境科学,2020,41(9):4169-4179.
    [30]
    JI Z H,LONG Z W,ZHANG Y,et al.Enrichment differences and source apportionment of nutrients,stable isotopes,and trace metal elements in sediments of complex and fragmented wetland systems[J].Environmental Pollution,2021,289:117852.
    [31]
    中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [32]
    于洋.湖南典型地区农用地土壤-稻米重金属污染来源解析及风险评价[D].合肥:中国科学技术大学,2022.
    [33]
    HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [34]
    马建华,王晓云,侯千,等.某城市幼儿园地表灰尘重金属污染及潜在生态风险[J].地理研究,2011,30(3):486-495.
    [35]
    孔凡彬,刘阳.单因子指数法和内梅罗指数法在土壤环境质量评价中的比较[J].甘肃科技,2014,30(3):21-22.
    [36]
    王玉军,吴同亮,周东美,等.农田土壤重金属污染评价研究进展[J].农业环境科学学报,2017,36(12):2365-2378.
    [37]
    刘瑞雪,乔冬云,王萍,等.湘潭县农田土壤重金属污染及生态风险评价[J].农业环境科学学报,2019,38(7):1523-1530.
    [38]
    CAI Z J,WANG B R,ZHANG L,et al.Striking a balance between N sources:mitigating soil acidification and accumulation of phosphorous and heavy metals from manure[J].Science of the Total Environment,2021,26(7):478-484.
    [39]
    倪中应,谢国雄,章明奎.酸化对耕地土壤镉铅有效性及农产品中镉铅积累的影响[J].江西农业学报,2017,29(8):52-56.
    [40]
    CHANG C Y,YIN R S,ZHANG H,et al.Bioaccumulation and health risk assessment of heavy metals in the soil-rice system in a typical seleniferous area in central China[J].Environmental Toxicology and Chemistry,2019,38(7):1577-1584.
  • Relative Articles

    [1]LI Zhenhua. AN EXPERIMENTAL STUDY ON HIGH EFFICIENCY INTERCEPTION AND PURIFICATION FOR URBAN RAINWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 108-115. doi: 10.13205/j.hjgc.202412014
    [2]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [3]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [4]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [5]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [6]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [7]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [8]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [9]SONG Binxue, HE Yueling, JIA Linchun, CENG Lin, CHEN Hong, XUE Gang. Fe0 SUPPORTED MIXOTROPHIC DENITRIFICATION FOR GROUNDWATER TREATMENTS: PERFORMANCE AND POTENTIAL MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 22-30,54. doi: 10.13205/j.hjgc.202208003
    [10]TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030
    [11]XIANG Jia-jia. GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 63-68,91. doi: 10.13205/j.hjgc.202109010
    [12]XIAO Yong, MO Pei, YIN Shi-yang, LIU Hong-lu, ZHANG Yun-hui. HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013
    [13]SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
    [14]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [15]WANG Hai-shan, ZOU Ping, DAI Ben, ZHU Fang-fang, WANG Zi-tong, AIXIAN Si-qi. OPTIMIZING BIOLOGICAL COMBINATION TECHNOLOGY TO IMPROVE PURIFICATION EFFICIENCY OF BLACK-ODOR WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 24-32,39. doi: 10.13205/j.hjgc.202101003
    [16]CHEN Si-li, YI Zhong-yuan, WANG Ji, PAN Chao-yi, CHANG Sha, GUO Qing-wei, ZHOU Jun-guang, SUN Lan. CASE STUDY ON REMEDIATION OF DIESEL CONTAMINATED SOIL AND GROUNDWATER BY ELUENT-EXTRACTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 178-182. doi: 10.13205/j.hjgc.202001029
    [17]ZHANG Ling-ling, TERIGELE, LI Jing-nan, ZHAO Yan-hui, YAN Qing-qing, ER Wen-fei. APPLICATION OF ULTRAFINE BUBBLE OXYGEN ENRICHMENT AND BIOLOGICAL ACTIVATION TECHNOLOGY IN BLACK AND ODOROUS WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 66-71,156. doi: 10.13205/j.hjgc.202011011
    [18]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
  • Cited by

    Periodical cited type(1)

    1. 纪昊辰,何如民. 硫化钠废液处理技术研究进展. 广东化工. 2022(23): 157-158+111 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.8 %FULLTEXT: 13.8 %META: 83.6 %META: 83.6 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.2 %其他: 0.2 %China: 4.1 %China: 4.1 %Italy: 0.2 %Italy: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.7 %上海: 2.7 %临汾: 0.2 %临汾: 0.2 %北京: 5.3 %北京: 5.3 %南京: 0.7 %南京: 0.7 %南充: 0.7 %南充: 0.7 %南昌: 0.7 %南昌: 0.7 %南通: 0.2 %南通: 0.2 %厦门: 0.5 %厦门: 0.5 %台州: 0.2 %台州: 0.2 %呼和浩特: 0.5 %呼和浩特: 0.5 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 3.1 %天津: 3.1 %太原: 0.2 %太原: 0.2 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %平凉: 0.2 %平凉: 0.2 %广州: 0.7 %广州: 0.7 %廊坊: 0.7 %廊坊: 0.7 %张家口: 2.4 %张家口: 2.4 %徐州: 0.2 %徐州: 0.2 %德州: 0.2 %德州: 0.2 %成都: 0.5 %成都: 0.5 %无锡: 0.7 %无锡: 0.7 %昆明: 0.7 %昆明: 0.7 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.4 %杭州: 1.4 %格林维尔: 1.0 %格林维尔: 1.0 %梧州: 0.2 %梧州: 0.2 %武汉: 0.7 %武汉: 0.7 %汕头: 0.5 %汕头: 0.5 %沈阳: 0.7 %沈阳: 0.7 %济源: 0.5 %济源: 0.5 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.2 %濮阳: 0.2 %石家庄: 0.2 %石家庄: 0.2 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 34.5 %西宁: 34.5 %西安: 1.7 %西安: 1.7 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %重庆: 0.5 %重庆: 0.5 %长治: 0.5 %长治: 0.5 %阳泉: 1.0 %阳泉: 1.0 %青岛: 0.5 %青岛: 0.5 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %其他其他ChinaItaly[]上海临汾北京南京南充南昌南通厦门台州呼和浩特哈尔滨嘉兴天津太原宣城常州常德平凉广州廊坊张家口徐州德州成都无锡昆明晋城朝阳杭州格林维尔梧州武汉汕头沈阳济源深圳温州漯河濮阳石家庄芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长治阳泉青岛香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (144) PDF downloads(10) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return