Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XING Yutong, ZHANG Yiwei, LU Ping. COMBUSTION AND PYROLYSIS CHARACTERISTICS OF HYDROCHARS BY CO-HYDROTHERMAL CARBONIZATION OF VISCOSE FIBER AND POPLAR WOOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 137-144,168. doi: 10.13205/j.hjgc.202308017
Citation: GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030

RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS

doi: 10.13205/j.hjgc.202308030
  • Received Date: 2022-08-20
    Available Online: 2023-11-15
  • For the existing soil pollution risk assessment methods are not closely related to soil and agricultural products pollution, and have poor applicability in different scenarios, a collaborative assessment method of heavy metal pollution risk in cultivated land based on multi-factor fusion was proposed, and the effectiveness of the method was verified by taking the risk assessment of heavy metal pollution in cultivated land soil in a county in southern China as an example. Based on soil environmental quality standards, soil background values, toxicity, and physical and chemical properties of heavy metal elements, the soil load capacity weight index was proposed. The heavy metal elements with the greatest ecological hazard in composite pollution were screened out, and the regional soil pollution risk under different scenarios was evaluated by the comprehensive evaluation index, and then the risk levels were determined by combining the pollution of agricultural products to build a collaborative risk assessment framework. The results showed that the soil pollution risk in the study area was divided into four levels, the negligible risk area accounted for 8.23% of the total cultivated land area, the low risk accounted for 17.45%, the medium risk and high risk areas accounted for 57.18% and 17.14%, respectively, the dominant heavy metal elements of soil pollution were Cd and Hg, and the medium and high pollution risk areas were mainly distributed in the central and eastern parts of the study area, and agricultural products had strong cadmium enrichment capacity. Compared with the geo-accumulation index method and the potential ecological hazard index method, the comprehensive evaluation index method proposed in this paper can automatically evaluate the risk of multi-element composite pollution, and effectively avoid the problem of unreasonable evaluation results caused by improper setting of the weight of each evaluation index.
  • [1]
    夏新,田志仁,姜晓旭,等.土壤环境采样质量监督体系的设计与实践[J].环境监控与预警,2019,11(4):1-4.
    [2]
    夏家淇.农用地块土壤污染分类标准制订方法探讨[J].生态与农村环境学报,2019,35(3):405-408.
    [3]
    李一蒙,马建华,刘德新,等.开封城市土壤重金属污染及潜在生态风险评价[J].环境科学,2015,36(3):1037-1044.
    [4]
    李航,谭科艳,张隆隆,等.土壤重金属地球化学特征及环境评价:以张北县二台镇为例[J/OL].地球学报:1-11[2022-05-03

    ].http://kns.cnki.Net/kcms/detail/11.3474.P.20220421.0947.002.html.
    [5]
    郭晗,孙英君,王绪璐,等.县域城市土壤重金属空间分布特征及来源解析[J].环境科学学报,2022,42(1):287-297.
    [6]
    郭森,肖捷颖,张依章,等.环南四湖区地下水中重金属健康风险评价[J].环境工程,2019,37(11):59-64.
    [7]
    窦韦强,安毅,秦莉,等.农田土壤重金属垂直分布迁移特征及生态风险评价[J].环境工程,2021,39(2):166-172.
    [8]
    孟婷婷,刘金宝,董浩,等.城市绿地不同管理方式土壤重金属污染及生态风险评价[J/OL].环境工程:1-9[2022-12-29

    ].http://kns.cnki.net/kcms/detail/11.2097.x.20220623.1337.002.html.
    [9]
    XU X B,WANG T T,SUN M X,et al.Management principles for heavy metal contaminated farmland based on ecological risk:a case study in the pilot area of Hunan province,China[J].Science of the Total Environment,2019,684:537-547.
    [10]
    LIU B Q,WANG J,XU M,et al.Spatial distribution,source apportionment and ecological risk assessment of heavy metals in the sediments of Haizhou Bay national ocean park,China[J].Marine Pollution Bulletin,2019,149:110651.
    [11]
    陈明,蔡青云,徐慧,等.水体沉积物重金属污染风险评价研究进展[J].生态环境学报,2015,24(6):1069-1074.
    [12]
    应蓉蓉,张晓雨,孔令雅,等.农用地土壤环境质量评价与类别划分研究[J].生态与农村环境学报,2020,36(1):18-25.
    [13]
    国家环境保护总局.土壤环境监测技术规范:HJ/T 166—2004[S].北京.2004.
    [14]
    MULLER G.Index of geoaccumulation in sediments of the Rhine River[J].Geojournal,1969,2(3):108-118.
    [15]
    郑飞,郭欣,汤名扬,等.白洋淀及周边土壤重金属的分布特征及生态风险评估[J/OL].环境科学:1-14[2022-04-28

    [16]
    左文萍,黎清华,张彦鹏,等.火山岩风化区农田重金属污染及健康风险评价:以海口江东新区为例[J/OL].地球科学:1-15[2022-04-28

    ].http://kns.cnki.net/kcms/detail/42.1874.P.20220321.2019.006.html.
    [17]
    刘子赫,孟瑞红,代辉祥,等.基于改进地累积指数法的沉积物重金属污染评价[J].农业环境科学学报,2019,38(9):2157-2164.
    [18]
    倪天翔,杨庆,王俊豪,等.一种新内梅罗指数法的修正方法及应用[J].水文地质工程地质,2018,45(2):171-174.
    [19]
    BI S,YANG Y,XU C,et al.Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China[J].Marine Pollution Bulletin,2017:S0025326X17304939.
    [20]
    郭志娟,周亚龙,王乔林,等.雄安新区土壤重金属污染特征及健康风险[J].中国环境科学,2021,41(1):431-441.
    [21]
    于常武,王琳,高超.水体沉积物重金属污染地累积指数法和分级提取评价技术的差异[J].辽宁工业大学学报(自然科学版),2015,35(3):196-199.
    [22]
    张秀,易廷辉.城市土壤重金属评价标准限值探讨[J].科学咨询,2008(13):74-75.
    [23]
    孙华,谢丽,张金婷,等.基于改进内梅罗指数法的棕(褐)地周边土壤重金属污染评价[J].环境保护科学,2018,44(2):98-102.
    [24]
    王玉军,刘存,周东美,等.一种农田土壤重金属影响评价的新方法:土壤和农产品综合质量指数法[J].农业环境科学学报,2016,35(7):1225-1232.
    [25]
    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [26]
    窦韦强,安毅,秦莉,等.稻米镉的生物富集系数与其影响因素的量化关系[J].土壤,2021,53(4):788-793.
    [27]
    王佛鹏,肖乃川,周浪,等.桂西南地球化学异常区农田重金属空间分布特征及污染评价[J].环境科学,2020,41(2):876-885.
    [28]
    生态环境部.土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618—2018[S].2018
    [29]
    郭志娟,周亚龙,杨峥,等.雄安新区土壤重金属地球化学监测关键问题探讨[J].环境科学,2020,41(9):4169-4179.
    [30]
    JI Z H,LONG Z W,ZHANG Y,et al.Enrichment differences and source apportionment of nutrients,stable isotopes,and trace metal elements in sediments of complex and fragmented wetland systems[J].Environmental Pollution,2021,289:117852.
    [31]
    中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [32]
    于洋.湖南典型地区农用地土壤-稻米重金属污染来源解析及风险评价[D].合肥:中国科学技术大学,2022.
    [33]
    HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [34]
    马建华,王晓云,侯千,等.某城市幼儿园地表灰尘重金属污染及潜在生态风险[J].地理研究,2011,30(3):486-495.
    [35]
    孔凡彬,刘阳.单因子指数法和内梅罗指数法在土壤环境质量评价中的比较[J].甘肃科技,2014,30(3):21-22.
    [36]
    王玉军,吴同亮,周东美,等.农田土壤重金属污染评价研究进展[J].农业环境科学学报,2017,36(12):2365-2378.
    [37]
    刘瑞雪,乔冬云,王萍,等.湘潭县农田土壤重金属污染及生态风险评价[J].农业环境科学学报,2019,38(7):1523-1530.
    [38]
    CAI Z J,WANG B R,ZHANG L,et al.Striking a balance between N sources:mitigating soil acidification and accumulation of phosphorous and heavy metals from manure[J].Science of the Total Environment,2021,26(7):478-484.
    [39]
    倪中应,谢国雄,章明奎.酸化对耕地土壤镉铅有效性及农产品中镉铅积累的影响[J].江西农业学报,2017,29(8):52-56.
    [40]
    CHANG C Y,YIN R S,ZHANG H,et al.Bioaccumulation and health risk assessment of heavy metals in the soil-rice system in a typical seleniferous area in central China[J].Environmental Toxicology and Chemistry,2019,38(7):1577-1584.
  • Relative Articles

    [1]HAO Jingyu, CHEN Shuxian, CHEN Xiang, WANG Xiankai, WANG Hang, HUA Yu, DAI Xiaohu. APPLICATION AND PROSPECTS OF PYROLYSIS CARBONIZATION TECHNOLOGY IN SLUDGE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 261-275. doi: 10.13205/j.hjgc.202409026
    [2]SONG Yuru, SUN Yunan, ZHANG Hongnan, CHEN Guanyi, DAN Zeng, CHENG Zhanjun, YAN Beibei. INCINERATION CHARACTERISTICS AND KINETICS OF PHOTOCURED 3D PRINTING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 292-300. doi: 10.13205/j.hjgc.202409029
    [3]LÜ Wenxin, LUAN Pengpeng, ZHOU Hui, WANG Jinglan, HE Sirong, CHENG Zhanjun, LI Ning, YAN Beibei, CHEN Guanyi. PYROLYSIS CHARACTERISTICS AND KINETIC ANALYSIS OF COMMON PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 110-118. doi: 10.13205/j.hjgc.202401015
    [4]YIN Zhitong, LV Hongbing, ZHANG Dongming, XU Jiao, HUANG Qunxing, ZHONG Yiliu, HUANG Pingan, PAN Yuhan. COMBUSTION TEMPERATURE AND EMISSION CHARACTERISTICS OF FLUE GAS POLLUTANTS OF WASTE TIRES PYROLYSIS OIL RICH IN AROMATICS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 105-111. doi: 10.13205/j.hjgc.202210014
    [5]MA Jiayu, JIN Yuqi, XUE Dong, TANG Feng, ZHU Zhongxu, LI Minjie, CHEN Siyu. DIOXIN EMISSION CHARACTERISTICS OF A NOVEL 30 t/d VILLAGE AND TOWN-SCALE SOLID WASTES GASIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 162-168. doi: 10.13205/j.hjgc.202210022
    [6]ZHANG Tengyuan, FENG Junxiao, FENG Long. SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 113-119. doi: 10.13205/j.hjgc.202202018
    [7]LI Xixi, FENG Junxiao. RESEARCH PROGRESS ON PYROLYSIS KINETICS OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 215-223. doi: 10.13205/j.hjgc.202210028
    [8]ZHOU Yang, JIN Baosheng. PYROLYSIS PERFORMANCE AND EVOLVED GAS ANALYSIS OF MIXED SEWAGE SLUDGE CONTAINING KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 80-87,175. doi: 10.13205/j.hjgc.202210011
    [9]HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006
    [10]YANG Guodong, LAN Tian, SONG Mengzhu, DU Yufeng, LIU Mengdan, SONG Yingchun, JIANG Jianguo. ENGINEERING APPLICATION OF A DRY-WET PRESS SEPARATION-HYDROTHERMAL CARBONIZATION TECHNOLOGY FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 53-60. doi: 10.13205/j.hjgc.202212008
    [11]HE Zhi-qiao, ZHANG Kang, LU Peng, GUAN Jian, LV Hong-kun, YING Guang-yao, LIU Ying-zu. COMBUSTION BEHAVIOR OF PYROLYSIS CHAR PRODUCED FROM MSW COMPONENTS BASED ON ACTIVITY AND POLLUTANT EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 172-178. doi: 10.13205/j.hjgc.202112026
    [12]FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017
    [13]HU Hua-jun, HUANG Ya-ji, CAO Jian-hua, LIU Ling-qin, QI Er-bing, DING Shou-yi, FAN Cong-hui. PYROLYSIS AND CARBON PRODUCTION OF RICE HUSK IN FLUIDIZED BED UNDER FLUE GAS WITH DIFFERENT CO2/O2 ATMOSPHERES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 117-122. doi: 10.13205/j.hjgc.202101018
    [14]ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 161-171. doi: 10.13205/j.hjgc.202103023
    [15]LIANG Jia-qi, LV Yuan, LU Yin, WANG Xiang-hui, ZHENG min, XU Kang-ning. RECOVERY OF AMMONIUM AND PHOSPHATE FROM CORN PROCESSING WASTEWATER USING MAGNETIC MgO-BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 89-94. doi: 10.13205/j.hjgc.202009015
    [16]LV Wen, JIA Jin-wei, ZHANG Shao-fei, ZHANG Fan, SONG Qiang, GU Qiu-xiang, SHU Xin-qian. INFLUENCE OF STEEL SLAG ON PYROLYSIS OF OIL TANK BOTTOM SLUDGE IN BEIJING-TIANJIN-HEBEI REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 169-176. doi: 10.13205/j.hjgc.202010027
    [17]ZHANG Hong-yu, JIANG Tao, ZHANG Yuan-qin. CO-COMBUSTION CHARACTERISTICS AND KINETIC ANALYSIS OF COMBUSTIBLE WASTE AND PULVERIZED COAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 185-189. doi: 10.13205/j.hjgc.202009029
    [19]Xian Yuanhua, . EXPERIMENTAL STUDY ON THE PERFORMANCE OF SLAUGHTERHOUSE SLUDGE COMPOST AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 109-111. doi: 10.13205/j.hjgc.201501025
  • Cited by

    Periodical cited type(2)

    1. 赵俊婷,万文卿,白璇,程远松,段志伟,朱哲. 市政污泥水热法制备高值固体燃料研究. 化学研究与应用. 2024(12): 2863-2872 .
    2. 朱光泽,周炜,夏志东,王晓露,李炳毅,郭福,吴玉锋. 有机废弃物热解分析技术现状与展望. 中国塑料. 2023(11): 101-116 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 88.0 %META: 88.0 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.5 %其他: 16.5 %其他: 0.8 %其他: 0.8 %上海: 2.3 %上海: 2.3 %保定: 0.8 %保定: 0.8 %北京: 2.3 %北京: 2.3 %南京: 2.3 %南京: 2.3 %台北: 4.5 %台北: 4.5 %台州: 3.0 %台州: 3.0 %哈尔滨: 0.8 %哈尔滨: 0.8 %大同: 1.5 %大同: 1.5 %天津: 2.3 %天津: 2.3 %宣城: 1.5 %宣城: 1.5 %常德: 1.5 %常德: 1.5 %广州: 0.8 %广州: 0.8 %弗吉: 0.8 %弗吉: 0.8 %张家口: 0.8 %张家口: 0.8 %扬州: 0.8 %扬州: 0.8 %无锡: 1.5 %无锡: 1.5 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %杭州: 3.0 %杭州: 3.0 %武汉: 1.5 %武汉: 1.5 %沈阳: 0.8 %沈阳: 0.8 %温州: 0.8 %温州: 0.8 %湘潭: 2.3 %湘潭: 2.3 %漯河: 3.0 %漯河: 3.0 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %芝加哥: 0.8 %芝加哥: 0.8 %衢州: 1.5 %衢州: 1.5 %西宁: 1.5 %西宁: 1.5 %西安: 2.3 %西安: 2.3 %贵阳: 2.3 %贵阳: 2.3 %运城: 3.8 %运城: 3.8 %遵义: 0.8 %遵义: 0.8 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 2.3 %重庆: 2.3 %长沙: 3.0 %长沙: 3.0 %其他其他上海保定北京南京台北台州哈尔滨大同天津宣城常德广州弗吉张家口扬州无锡昆明晋城杭州武汉沈阳温州湘潭漯河芒廷维尤芝加哥衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (145) PDF downloads(10) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return