Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
Citation: ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031

SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019

doi: 10.13205/j.hjgc.202308031
  • Received Date: 2022-12-06
    Available Online: 2023-11-15
  • In order to understand the pollution sources and ecological risks of heavy metals in PM2.5 in the Fengfeng mining area, PM2.5 samples were collected from 2017 to 2019, and the concentrations of heavy metals (Zn, Pb, Mn, Cr, Cu, As, Sb, Ni, Cd and Co) in the PM2.5 samples were determined by inductively coupled plasma mass spectrometer (ICP-MS). The sources and ecological risks of heavy metals were investigated by enrichment factor, principal component analysis, geoaccumulation index and potential ecological risk index. The results showed that the average daily concentration of PM2.5 in the Fengfeng mining area during the sampling period was about 1.66 times the limit value in the Environmental Air Quality Standard (GB 3095—2012), showing a seasonal rule that winter and spring were higher than summer and autumn. The variation rule of element concentration was basically consistent with that of PM2.5 concentration and the total element concentration decreased year by year. The total average concentration of heavy metals in PM2.5 was in an order of Zn>Pb>Mn>Cr>Cu>As>Sb>Ni>Cd>Co. The sum of Zn, Pb, Mn, Cr and Cu elements accounted for 92.7% of the total element concentration, and As and Cr exceeded the standard seriously. The results of enrichment factors showed that Cr, Cu and As were heavily enriched, and Zn, Pb, Sb and Cd were extremely heavily enriched, mainly coming from human activities. Principal component analysis showed that the sources of metals were coal sources, traffic sources, industrial sources, natural sources, and agricultural sources. The geoaccumulation index showed that Cr, Cu and As were heavy pollution, greatly affected by man-made pollution. While Zn, Pb, Sb and Cd reached serious pollution, they were mainly affected by human activities. The comprehensive potential ecological risk level of heavy metals in the Fengfeng mining area was extremely strong. Among the single factor pollutants, the potential risk levels of Sb and Cd were extremely strong. With the introduction of a series of air and environmental governance policies, the pollution level and potential ecological risk index of PM2.5 and most elements decreased in 2019, compared with the other two years.
  • loading
  • [1]
    唐孝炎,张远航,邵敏.大气环境化学[M].2版.北京:高等教育出版社,2006.
    [2]
    DUAN J C,TAN J H,WANG S L,et al.Size distributions and sources of elements in particulate matter at curbside,urban and rural sites in Beijing[J].Journal of Environmental Sciences,2012,24(1):87-94.
    [3]
    ZHANG J,HUA P,KREBS P.Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment[J].Environmental Pollution,2017,228(sep.):158-168.
    [4]
    CHEN P,BI X,ZHANG J,et al.Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin,China[J].Particuology,2015,20(3):104-109.
    [5]
    李敏,高燕红,郭凌川,等.广州大气PM2.5中重金属污染的健康风险评价[J].环境与健康杂志,2016,33(5):421-424.
    [6]
    WANG X.Characteristics and potential ecological risk assessment of heavy metals in reclaimed land of a bauxite mine[J].Science of Soil and Water Conservation,2019,17(2):94-102.
    [7]
    张鑫,赵小曼,孟雪洁,等.北京、新乡夏季大气颗粒物中重金属的粒径分布及人体健康风险评价[J].环境科学,2018,39(3):997-1003.
    [8]
    CRILLEY L R L F,BLOSS W.Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign-ScienceDirect[J].Environmental Pollution,2017,220(Pt B):766-778.
    [9]
    闫广轩,张朴真,黄海燕,等.郑州-新乡冬季PM2.5中元素浓度特征及其源分析[J].环境科学,2019,40(5):2027-2035.
    [10]
    林晓辉,赵阳,樊孝俊,等.南昌市秋季大气PM2.5中金属元素富集特征及来源分析[J].环境科学,2016,37(1):35-40.
    [11]
    陶俊,张仁健,段菁春,等.北京城区PM2.5中致癌重金属季节变化特征及其来源分析[J].环境科学,2014,35(2):411-417.
    [12]
    金媛媛,张晓梅,陈鸿,等.上海市某工业区大气PM2.5中重金属浓度及生态风险评估[J].上海预防医学,2022,34(3):252-255.
    [13]
    林俊,刘卫,李燕,等.上海市郊区大气细颗粒和超细颗粒物中元素粒径分布研究[J].环境科学,2009,30(4):982-987.
    [14]
    袁鸾,徐伟嘉,岳玎利,等.广州不同环境空气PM2.5中金属元素污染特征与风险评价[J].中国环境监测,2021,37(6):91-100.
    [15]
    张启钧,吴琳,方小珍,等.天津典型道路环境PM2.5中重金属的粒径分布及健康风险评价[J].环境污染与防治,2019,41(10):1202-1206.
    [16]
    樊景森,孙玉壮,牛红亚,等.九龙煤矿煤矸石山对环境的有机污染[J].环境污染与防治,2009,31(1):101-103.
    [17]
    张松,郑刘根,陈永春,等.淮南矿区道路环境大气颗粒物重金属污染特征及来源解析[J].环境污染与防治,2020,42(7):912-916

    ,928.
    [18]
    靳晓洋.峰峰矿区气溶胶化学组成的特征研究[D].邯郸:河北工程大学,2018.
    [19]
    兰建林,朱雪凝,刘跃斌,等.煤矿区PM2.5、PM10中重金属的污染水平及综合风险评价[J].生态环境学报,2020,29(8):1592-1601.
    [20]
    樊景森,浑凌云,靳晓洋,等.太行山东麓煤矿区气溶胶重金属元素污染特征及来源分析[J].河北工程大学学报(自然科学版),2018,35(3):76-81.
    [21]
    武振晓,闫珊珊,薛凡利,等.邯郸市冬季大气PM2.5中金属元素空间污染特征及生态风险评价[J].中国环境监测,2021,37(1):76-86.
    [22]
    乔宝文,刘子锐,胡波,等.北京冬季PM2.5中金属元素浓度特征和来源分析[J].环境科学,2017,38(3):876-883.
    [23]
    王伟,孔少飞,刘海彪,等.南京市春节前后大气PM2.5中重金属来源及健康风险评价[J].中国环境科学,2016,36(7):2186-2195.
    [24]
    邓林俐,张凯山,殷子渊,等.基于PMF模型的PM2.5中金属元素污染及来源的区域特征分析[J].环境科学,2020,41(12):5276-5287.
    [25]
    姚森,王乾恒,薛妍,等.郑州市冬季大气PM2.5金属元素来源及健康风险评价[J].环境科学,2022,43(5):2329-2335.
    [26]
    唐大镜,常会云,张莹,等.2017—2019年石家庄市PM2.5中重金属污染及健康风险评价[J].现代预防医学,2021,48(7):1177-1180

    ,1197.
    [27]
    中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [28]
    赵珍丽,赵委托,黄庭,等.电镀厂周边大气PM10中重金属季节性分布特征及生态风险评价[J].环境科学,2018,39(1):18-26.
    [29]
    MULLER G.Index of geoaccumulation in sediments of the Rhine River[J].GeoJournal,1969,2(3):109-118.
    [30]
    HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [31]
    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [32]
    李雪华.锑矿区沉积物生态风险评价及修复技术研究[D].北京:北京林业大学,2013.
    [33]
    沈嵩,刘蕾,温维,等.北京及周边地区夏季PM2.5中含碳组分污染特征与来源解析[J].环境工程,2022,40(2):71-80.
    [34]
    肖致美,徐虹,李立伟,等.基于在线观测的天津市PM2.5污染特征及来源解析[J].环境科学,2020,41(10):4355-4363.
    [35]
    牛红亚,杨旗,刘召策,等.燃煤工业城市大气细颗粒物中水溶性无机离子的季节变化特征及来源解析:以邯郸市为例[J].中国环境监测,2020,36(1):26-33.
    [36]
    程文净.邯郸市碳质气溶胶及单颗粒的理化特征研究[D].邯郸:河北工程大学,2018.
    [37]
    崔井龙,张志红,夏娜,等.太原市某城区四季大气PM2.5中重金属污染特征分析[J].环境科学学报,2016,36(5):1566-1572.
    [38]
    LIN Y C,ZHANG Y L,SONG W,et al.Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event[J].Science of the Total Environment,2020,734:138651.
    [39]
    张智胜,陶俊,龙颖贤,等.成都城区PM2.5中有害微量元素的污染特征[J].中国科学院大学学报,2014,31(3):426-430

    ,438.
    [40]
    吴红璇,史常青,张艳,等.乌海市煤矿区及周边春季降尘污染特征及来源分析[J].环境科学,2020,41(3):1167-1175.
    [41]
    张银晓,卢春颖,张剑,等.民用燃煤排放细颗粒中金属元素排放特征及单颗粒分析[J].中国环境科学,2018,38(9):3273-3279.
    [42]
    徐静,李杏茹,张兰,等.北京城郊PM2.5中金属元素的污染特征及潜在生态风险评价[J].环境科学,2019,40(6):2501-2509.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return