Citation: | SHAO Yanjun, WANG Bing, ZHOU Yu, SHI Jun, ZONG Zhenghui, LIU Guoqiang, TAO Xiang, ZHANG Xin, HUANG Kaiwen, WANG Yan, WANG Shuo, LI Ji. PRELIMINARY STUDY ON APPLICATION OF SLUDGE DENSIFICATION SYSTEM TECHNOLOGY IN AN INVERTED AAO CONTINUOUS FLOW WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 72-79. doi: 10.13205/j.hjgc.202309009 |
[1] |
余诚, 王凯军, 张凯渊, 等. 连续流好氧颗粒污泥技术处理低浓度市政污水的中试研究[J]. 环境工程学报, 2023, 17(3):713-721.
|
[2] |
STRUBBE L, DIJK E J H V, DEENEKAMP P J M, et al. Oxygen transfer efficiency in an aerobic granular sludge reactor:dynamics and influencing factors of alpha[J]. Chemical Engineering Journal, 2023, 452:139548.
|
[3] |
van DIJK E J H, PRONK M, van LOOSDRECHT M C M. A settling model for full-scale aerobic granular sludge[J]. Water Research, 2020, 186:116135.
|
[4] |
WEI S P, STENSEL H D, NGUYEN QUOC B, et al. Flocs in disguise? High granule abundance found in continuous-flow activated sludge treatment plants[J]. Water Research, 2020, 179:115865.
|
[5] |
丁健宁, 宫徽, 王顺煜, 等. 水力旋流分离器在水处理领域的应用研究进展[J]. 环境工程, 2021, 39(8):1-6.
|
[6] |
GONG H, DING J, WANG S, et al. Optimizing granular anammox retention via hydrocycloning during two-stage deammonification of high-solid sludge anaerobic digester supernatant[J]. Science of the Total Environment, 2021, 791:148048.
|
[7] |
GUO D, JIANG X, GUO M, et al. Role of hydrocyclone separator on the formation and separation of aerobic granular sludge:evaluating granulation efficiency and simulating hydrodynamic behavior[J]. Separation and Purification Technology, 2022, 283:120231.
|
[8] |
ROCHE C, DONNAZ S, MURTHY S, et al. Biological process architecture in continuous-flow activated sludge by gravimetry:controlling densified biomass form and function in a hybrid granule-floc process at Dijon WRRF, France[J]. Water Environment Research, 2022, 94(1):e1664.
|
[9] |
李志华, 赵敏, 贺春博, 等. 旋流选择作用及KLa对污泥颗粒化的影响研究[J]. 环境科学与技术, 2014, 37(3):37-40
, 45.
|
[10] |
REGMI P, STURM B, HIRIPITIYAGE D, et al. Combining continuous flow aerobic granulation using an external selector and carbon-efficient nutrient removal with AvN control in a full-scale simultaneous nitrification-denitrification process[J]. Water Research, 2022, 210:117991.
|
[11] |
GEMZA N, JANIAK K, ZIEBA B, et al. Long-term effects of hydrocyclone operation on activated sludge morphology and full-scale secondary settling tank wet-weather operation in long sludge age WWTP[J]. Science of the Total Environment, 2022, 845:157224.
|
[12] |
WU D, ZHAO B, ZHANG P, et al. Insight into the effect of nitrate on AGS granulation:granular characteristics, microbial community and metabolomics response[J]. Water Research, 2023, 236:119949.
|
[13] |
TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater Engineering:Treatment and Reuse[M]. 4th Ed, McGraw-Hill, New York, 2003.
|
[14] |
王晓东, 毕学军, 初正崑, 等. 反应温度变化对活性污泥沉降性能的影响分析[J]. 中国给水排水, 2013, 29(23):128-131.
|
[15] |
LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor[J]. Separation and Purification Technology, 2016, 160:1-10.
|
[16] |
熊京忠, 来铭笙, 吉芳英, 等. 细微泥沙粒径对SBR系统污泥性质的影响[J]. 中国给水排水, 2015, 31(13):37-41.
|
[17] |
MU Y, WAN L, LIANG Z, et al. Enhanced biological phosphorus removal by high concentration powder carrier bio-fluidized bed (HPB):phosphorus distribution, cyclone separation, and metagenomics[J]. Chemosphere, 2023, 337:139353.
|
[18] |
钱玉兰, 李燕, 乔椋, 等无机絮凝剂对SBR系统中活性污泥的影响研究[J]. 中国环境科学, 2020, 40(6):2445-2453.
|
[19] |
王水兵, 高俊贤, 王燕, 等. 某污水处理厂旋流沉砂池结构改造及运行效果分析[J]. 环境工程, 2020, 38(7):116-121.
|
[20] |
ZHAO P, ZHAO S, WANG H G, et al. Encapsulation of bacteria in different stratified extracellular polymeric substances and its implications for performance enhancement and resource recovery[J]. Water Research, 2022, 220:118684.
|
[21] |
AQEEL H, WEISSBRODT D G, CERRUTI M, et al. Drivers of bioaggregation from flocs to biofilms and granular sludge[J]. Environmental Science:Water Research & Technology, 2019, 5(12):2072-2089.
|