Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
HAO Jiahou, TAN Jiayi, ZHANG Yue, SONG Lian, WANG Shuo, CHEN Sisi, LI Ji. INVESTIGATION ON CHARACTERIZATION AND CROP EFFECT OF MICROBIAL NUTRIENT STIMULANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 80-88. doi: 10.13205/j.hjgc.202309010
Citation: HAO Jiahou, TAN Jiayi, ZHANG Yue, SONG Lian, WANG Shuo, CHEN Sisi, LI Ji. INVESTIGATION ON CHARACTERIZATION AND CROP EFFECT OF MICROBIAL NUTRIENT STIMULANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 80-88. doi: 10.13205/j.hjgc.202309010

INVESTIGATION ON CHARACTERIZATION AND CROP EFFECT OF MICROBIAL NUTRIENT STIMULANTS

doi: 10.13205/j.hjgc.202309010
  • Received Date: 2023-08-08
    Available Online: 2023-11-15
  • Microbial nutrient stimulant, produced after alkaline thermal hydrolysis of activated sludge, are rich in nitrogenous nutrients and stimulant substances that promote plant growth, and have received rising attention in the field of sludge resource utilization and sustainable agricultural development. This study focused on analyzing the basic nutrient characteristics, stimulant composition characteristics, and pollutant content characteristics of microbial nutrient stimulants, and analyzing their potential in land application. Microbial nutrient stimulant was rich in nutrients such as nitrogen, phosphorus, potassium, organic carbon, and minerals that promoted plant growth, with nitrogen and calcium as the main elements. At the same time, the microbial nutrient stimulants also contained stimulant components such as humic acid, fulvic acid, tryptophan, as well as phytohormone substances (indole-3-acetic acid) and chemosensory substances (indole derivatives), a total of 9445 kinds of organic molecules were detected. The heavy metal content of microbial nutrient stimulants was reduced by 47.39% to 100% compared to sludge, and the ecological risk of PAHs and antibiotics was much lower than that of sludge. A summary of the land application effect showed that microbial nutrient stimulants could promote the yield of pakchoi cabbage, reduce the accumulation of heavy metals in pakchoi cabbage, and reduce fertilization costs, by partially replacing chemical fertilizers. By analyzing the dual properties of nutrient and stimulant components of microbial nutrient stimulant, it was suggested that microbial nutrient stimulant had good potential for application in enhancing photosynthesis, antioxidant properties, nutritional quality, and reducing heavy metal accumulation in pakchoi cabbage.
  • loading
  • [1]
    XIAO K, ZHOU Y. Protein recovery from sludge:a review[J]. Journal of Cleaner Production, 2020, 249:119373. DOI: 10.1016/j.jclepro.2019.119373.
    [2]
    HE C, WANG K, YANG Y, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science & Technology, 2015, 49(11):6872-6880.
    [3]
    SOOBHANY N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production:a review[J]. Journal of Cleaner Production, 2019, 241:118413. DOI: https://doi.org/10.1016/j.jclepro.2019.118413.
    [4]
    TANG Y, DONG B, DAI X. Hyperthermophilic pretreatment composting to produce high quality sludge compost with superior humification degree and nitrogen retention[J]. Chemical Engineering Journal, 2022, 429:132247. DOI: https://doi.org/10.1016/j.cej.2021.132247.
    [5]
    HOUILLON G, JOLLIET O. Life cycle assessment of processes for the treatment of wastewater urban sludge:energy and global warming analysis[J]. Journal of Cleaner Production, 2005, 13(3):287-299.
    [6]
    CHO H U, PARK S K, HA J H, et al. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation[J]. Journal of Environmental Management, 2013, 129:274-282.
    [7]
    LIU X, LIU H, CHEN J, et al. Enhancement of solubilization and acidification of waste activated sludge by pretreatment[J]. Waste Management, 2008, 28(12):2614-2622.
    [8]
    LU D, QIAN T, LE C, et al. Insights into thermal hydrolyzed sludge liquor-identification of plant-growth-promoting compounds[J]. Journal of Hazardous Materials, 2021, 403:123650. DOI: 10.1016/j.jhazmat.2020.123650.
    [9]
    CANELLAS L P, OLIVARES F L, AGUIAR N O, et al. Humic and fulvic acids as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:15-27.
    [10]
    PICHYANGKURA R, CHADCHAWAN S. Biostimulant activity of chitosan in horticulture[J]. Scientia Horticulturae, 2015, 196:49-65.
    [11]
    COLLA G, NARDI S, CARDARELLI M, et al. Protein hydrolysates as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:28-38.
    [12]
    BATTACHARYYA D, BABGOHARI M Z, RATHOR P, et al. Seaweed extracts as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:39-48.
    [13]
    RUZZI M, AROCA R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:124-134.
    [14]
    CAI C, HUA Y, LIU H, et al. A new approach to recycling cephalosporin fermentation residue into plant biostimulants[J/OL]. Journal of Hazardous Materials, 2021, 413:125393. DOI: https://doi.org/10.1016/j.jhazmat.2021.125393.
    [15]
    CECCARELLI A V, MIRAS-MORENO B, BUFFAGNI V, et al. Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism[J]. Plants, 2021, 10:1-14.
    [16]
    COZZOLINO V, DI MEO V, MONDA H, et al. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition[J]. Biology and Fertility of Soils, 2016, 52(1):15-29.
    [17]
    LI X, GUO J, DONG R, et al. Properties of plant nutrient:comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure[J]. Science of the Total Environment, 2016, 544:774-781.
    [18]
    LI X, GUO J, DONG R, et al. Indolic derivatives metabolism in the anaerobic reactor treating animal manure:pathways and regulation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9):11511-11518.
    [19]
    SCAGLIA B, POGNANI M, ADANI F. The anaerobic digestion process capability to produce biostimulant:the cMNS study of the dissolved organic matter (dom) vs. auxin-like property[J]. Science of the Total Environment, 2017, 589:36-45.
    [20]
    陈同斌, 黄启飞. 中国城市污泥的重金属含量及其变化趋势[J]. 环境科学学报, 2003(5):561-569.
    [21]
    CAI Q Y, MO C H, WU Q T, et al. Quantitative determination of organic priority pollutants in the composts of sewage sludge with rice straw by gas chromatography coupled with mass spectrometry[J]. Journal of Chromatography A, 2007, 1143(1/2):207-214.
    [22]
    CHEN Y, YU G, CAO Q, et al. Occurrence and environmental implications of pharmaceuticals in chinese municipal sewage sludge[J]. Chemosphere, 2013, 93(9):1765-1772.
    [23]
    ZHOU L J, YING G G, LIU S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in south china[J]. Science of the Total Environment, 2013, 452:365-376.
    [24]
    SELIM M M. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties[J]. International Journal of Agronomy, 2020:2821678. DOI: 10.1155/2020/2821678.
    [25]
    TANG Q, TI C, XIA L, et al. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in china[J]. Journal of Cleaner Production, 2019, 224:779-788.
    [26]
    陈晨,谭昊,李文祥,等. 典型村镇有机废物有机肥产品的品质表征[J]. 中国沼气, 2022,40(2):54-59.
    [27]
    GHMNSMI S, KHOSHGOFTARMANESH A H, HADADZADEH H, et al. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture[J]. Journal of Plant Growth Regulation, 2012, 31(4):498-508.
    [28]
    WANG L, LIN Y, YE L, et al. Microbial roles in dissolved organic matter transformation in full-scale wastewater treatment processes revealed by reactomics and comparative genomics[J]. Environmental Science & Technology, 2021, 55(16):11294-11307.
    [29]
    HAYGARTH P M, BARDGETT R D, CONDRON L M. Nitrogen and phosphorus cycles and their management[J]. Soil Conditions and Plant Growth, 2013:132-159.
    [30]
    MUSCOLO A, MARRA F, CANINO F, et al. Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-bMNSd fertilizer, organic and chemical fertilizers[J]. Scientia Horticulturae, 2022, 305:111421. DOI: 10.1016/j.scienta.2022.111421.
    [31]
    HAO J, TAN J, ZHANG Y, et al. Metabolomics reveals the molecular mechanism of sewage sludge-derived nutrients and biostimulants stimulating resistance enhancement and the redistribution of carbon and nitrogen metabolism in pakchoi cabbage[J]. Science of the Total Environment, 2023, 891:164330. DOI: 10.1016/j.scitotenv.2023.164330.
    [32]
    YUE J, HU X, HUANG J. Origin of plant auxin biosynthesis[J]. Trends in Plant Science, 2014, 19(12):764-770.
    [33]
    FANG Z, WANG X, ZHANG X, et al. Effects of fulvic acid on the photosynthetic and physiological characteristics of paeonia ostii under drought stress[J]. Plant Signaling & Behavior, 2020, 15(7):1774714. DOI: 10.1080/15592324.2020.1774714.
    [34]
    YANG W, LI P, GUO S, et al. Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions[J]. Plant Growth Regulation, 2017, 83(3):351-360.
    [35]
    SUN P, HUANG Y, YANG X, et al. The role of indole derivative in the growth of plants:a review[J]. Frontiers in Plant Science, 2023, 13:1120613.
    [36]
    BULGARI R, COCETTA G, TRIVELLINI A, et al. Biostimulants and crop responses:a review[J]. Biological Agriculture & Horticulture, 2015, 31(1):1-17.
    [37]
    YANG G, ZHANG G, WANG H. Current state of sludge production, management, treatment and disposal in china[J]. Water Research, 2015, 78:60-73.
    [38]
    GUO G H, CHEN T B, YANG J, et al. Regional distribution characteristics and variation of heavy metals in sewage sludge of china[J]. Acta Scientiae Circumstantiae, 2014, 34:2455-2461.
    [39]
    TANG Y, XIE H, SUN J, et al. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants[J]. Water Research, 2022, 211:118036. DOI: https://doi.org/10.1016/j.watres.2021.118036.
    [40]
    孙少静, 李博, 原安妮,等.多环芳烃(PAHs)在全国城市污水处理厂污泥中的残留现状[C]//持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会论文集, 2017:3.
    [41]
    曾巧云, 丁丹, 檀笑.中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 2018,9(27):1774-1782.
    [42]
    BOXALL A B, FOGG L, BLACKWELL P, et al. Veterinary medicines in the environment[J]. Reviews of Environmental Contamination and Toxicology, 2003:1-91.
    [43]
    EGHBALL B, WIENHOLD B, GILLEY J E, et al. Mineralization of manure nutrients[J]. Journal of Soil and Water Conservation, 2002, 57(6):470-473.
    [44]
    谭嘉怡,郝家厚,李羽志,等.施用污泥基营养激励素对微型汤姆番茄品质及土壤性质的影响[J/OL]. 中国环境科学:1-10. DOI: 10.19674/j.cnki.issn1000

    -6923.20230728.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return