Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAO Jiahou, TAN Jiayi, ZHANG Yue, SONG Lian, WANG Shuo, CHEN Sisi, LI Ji. INVESTIGATION ON CHARACTERIZATION AND CROP EFFECT OF MICROBIAL NUTRIENT STIMULANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 80-88. doi: 10.13205/j.hjgc.202309010
Citation: HAO Jiahou, TAN Jiayi, ZHANG Yue, SONG Lian, WANG Shuo, CHEN Sisi, LI Ji. INVESTIGATION ON CHARACTERIZATION AND CROP EFFECT OF MICROBIAL NUTRIENT STIMULANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 80-88. doi: 10.13205/j.hjgc.202309010

INVESTIGATION ON CHARACTERIZATION AND CROP EFFECT OF MICROBIAL NUTRIENT STIMULANTS

doi: 10.13205/j.hjgc.202309010
  • Received Date: 2023-08-08
    Available Online: 2023-11-15
  • Microbial nutrient stimulant, produced after alkaline thermal hydrolysis of activated sludge, are rich in nitrogenous nutrients and stimulant substances that promote plant growth, and have received rising attention in the field of sludge resource utilization and sustainable agricultural development. This study focused on analyzing the basic nutrient characteristics, stimulant composition characteristics, and pollutant content characteristics of microbial nutrient stimulants, and analyzing their potential in land application. Microbial nutrient stimulant was rich in nutrients such as nitrogen, phosphorus, potassium, organic carbon, and minerals that promoted plant growth, with nitrogen and calcium as the main elements. At the same time, the microbial nutrient stimulants also contained stimulant components such as humic acid, fulvic acid, tryptophan, as well as phytohormone substances (indole-3-acetic acid) and chemosensory substances (indole derivatives), a total of 9445 kinds of organic molecules were detected. The heavy metal content of microbial nutrient stimulants was reduced by 47.39% to 100% compared to sludge, and the ecological risk of PAHs and antibiotics was much lower than that of sludge. A summary of the land application effect showed that microbial nutrient stimulants could promote the yield of pakchoi cabbage, reduce the accumulation of heavy metals in pakchoi cabbage, and reduce fertilization costs, by partially replacing chemical fertilizers. By analyzing the dual properties of nutrient and stimulant components of microbial nutrient stimulant, it was suggested that microbial nutrient stimulant had good potential for application in enhancing photosynthesis, antioxidant properties, nutritional quality, and reducing heavy metal accumulation in pakchoi cabbage.
  • [1]
    XIAO K, ZHOU Y. Protein recovery from sludge:a review[J]. Journal of Cleaner Production, 2020, 249:119373. DOI: 10.1016/j.jclepro.2019.119373.
    [2]
    HE C, WANG K, YANG Y, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science & Technology, 2015, 49(11):6872-6880.
    [3]
    SOOBHANY N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production:a review[J]. Journal of Cleaner Production, 2019, 241:118413. DOI: https://doi.org/10.1016/j.jclepro.2019.118413.
    [4]
    TANG Y, DONG B, DAI X. Hyperthermophilic pretreatment composting to produce high quality sludge compost with superior humification degree and nitrogen retention[J]. Chemical Engineering Journal, 2022, 429:132247. DOI: https://doi.org/10.1016/j.cej.2021.132247.
    [5]
    HOUILLON G, JOLLIET O. Life cycle assessment of processes for the treatment of wastewater urban sludge:energy and global warming analysis[J]. Journal of Cleaner Production, 2005, 13(3):287-299.
    [6]
    CHO H U, PARK S K, HA J H, et al. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation[J]. Journal of Environmental Management, 2013, 129:274-282.
    [7]
    LIU X, LIU H, CHEN J, et al. Enhancement of solubilization and acidification of waste activated sludge by pretreatment[J]. Waste Management, 2008, 28(12):2614-2622.
    [8]
    LU D, QIAN T, LE C, et al. Insights into thermal hydrolyzed sludge liquor-identification of plant-growth-promoting compounds[J]. Journal of Hazardous Materials, 2021, 403:123650. DOI: 10.1016/j.jhazmat.2020.123650.
    [9]
    CANELLAS L P, OLIVARES F L, AGUIAR N O, et al. Humic and fulvic acids as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:15-27.
    [10]
    PICHYANGKURA R, CHADCHAWAN S. Biostimulant activity of chitosan in horticulture[J]. Scientia Horticulturae, 2015, 196:49-65.
    [11]
    COLLA G, NARDI S, CARDARELLI M, et al. Protein hydrolysates as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:28-38.
    [12]
    BATTACHARYYA D, BABGOHARI M Z, RATHOR P, et al. Seaweed extracts as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:39-48.
    [13]
    RUZZI M, AROCA R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196:124-134.
    [14]
    CAI C, HUA Y, LIU H, et al. A new approach to recycling cephalosporin fermentation residue into plant biostimulants[J/OL]. Journal of Hazardous Materials, 2021, 413:125393. DOI: https://doi.org/10.1016/j.jhazmat.2021.125393.
    [15]
    CECCARELLI A V, MIRAS-MORENO B, BUFFAGNI V, et al. Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism[J]. Plants, 2021, 10:1-14.
    [16]
    COZZOLINO V, DI MEO V, MONDA H, et al. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition[J]. Biology and Fertility of Soils, 2016, 52(1):15-29.
    [17]
    LI X, GUO J, DONG R, et al. Properties of plant nutrient:comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure[J]. Science of the Total Environment, 2016, 544:774-781.
    [18]
    LI X, GUO J, DONG R, et al. Indolic derivatives metabolism in the anaerobic reactor treating animal manure:pathways and regulation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9):11511-11518.
    [19]
    SCAGLIA B, POGNANI M, ADANI F. The anaerobic digestion process capability to produce biostimulant:the cMNS study of the dissolved organic matter (dom) vs. auxin-like property[J]. Science of the Total Environment, 2017, 589:36-45.
    [20]
    陈同斌, 黄启飞. 中国城市污泥的重金属含量及其变化趋势[J]. 环境科学学报, 2003(5):561-569.
    [21]
    CAI Q Y, MO C H, WU Q T, et al. Quantitative determination of organic priority pollutants in the composts of sewage sludge with rice straw by gas chromatography coupled with mass spectrometry[J]. Journal of Chromatography A, 2007, 1143(1/2):207-214.
    [22]
    CHEN Y, YU G, CAO Q, et al. Occurrence and environmental implications of pharmaceuticals in chinese municipal sewage sludge[J]. Chemosphere, 2013, 93(9):1765-1772.
    [23]
    ZHOU L J, YING G G, LIU S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in south china[J]. Science of the Total Environment, 2013, 452:365-376.
    [24]
    SELIM M M. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties[J]. International Journal of Agronomy, 2020:2821678. DOI: 10.1155/2020/2821678.
    [25]
    TANG Q, TI C, XIA L, et al. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in china[J]. Journal of Cleaner Production, 2019, 224:779-788.
    [26]
    陈晨,谭昊,李文祥,等. 典型村镇有机废物有机肥产品的品质表征[J]. 中国沼气, 2022,40(2):54-59.
    [27]
    GHMNSMI S, KHOSHGOFTARMANESH A H, HADADZADEH H, et al. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture[J]. Journal of Plant Growth Regulation, 2012, 31(4):498-508.
    [28]
    WANG L, LIN Y, YE L, et al. Microbial roles in dissolved organic matter transformation in full-scale wastewater treatment processes revealed by reactomics and comparative genomics[J]. Environmental Science & Technology, 2021, 55(16):11294-11307.
    [29]
    HAYGARTH P M, BARDGETT R D, CONDRON L M. Nitrogen and phosphorus cycles and their management[J]. Soil Conditions and Plant Growth, 2013:132-159.
    [30]
    MUSCOLO A, MARRA F, CANINO F, et al. Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-bMNSd fertilizer, organic and chemical fertilizers[J]. Scientia Horticulturae, 2022, 305:111421. DOI: 10.1016/j.scienta.2022.111421.
    [31]
    HAO J, TAN J, ZHANG Y, et al. Metabolomics reveals the molecular mechanism of sewage sludge-derived nutrients and biostimulants stimulating resistance enhancement and the redistribution of carbon and nitrogen metabolism in pakchoi cabbage[J]. Science of the Total Environment, 2023, 891:164330. DOI: 10.1016/j.scitotenv.2023.164330.
    [32]
    YUE J, HU X, HUANG J. Origin of plant auxin biosynthesis[J]. Trends in Plant Science, 2014, 19(12):764-770.
    [33]
    FANG Z, WANG X, ZHANG X, et al. Effects of fulvic acid on the photosynthetic and physiological characteristics of paeonia ostii under drought stress[J]. Plant Signaling & Behavior, 2020, 15(7):1774714. DOI: 10.1080/15592324.2020.1774714.
    [34]
    YANG W, LI P, GUO S, et al. Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions[J]. Plant Growth Regulation, 2017, 83(3):351-360.
    [35]
    SUN P, HUANG Y, YANG X, et al. The role of indole derivative in the growth of plants:a review[J]. Frontiers in Plant Science, 2023, 13:1120613.
    [36]
    BULGARI R, COCETTA G, TRIVELLINI A, et al. Biostimulants and crop responses:a review[J]. Biological Agriculture & Horticulture, 2015, 31(1):1-17.
    [37]
    YANG G, ZHANG G, WANG H. Current state of sludge production, management, treatment and disposal in china[J]. Water Research, 2015, 78:60-73.
    [38]
    GUO G H, CHEN T B, YANG J, et al. Regional distribution characteristics and variation of heavy metals in sewage sludge of china[J]. Acta Scientiae Circumstantiae, 2014, 34:2455-2461.
    [39]
    TANG Y, XIE H, SUN J, et al. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants[J]. Water Research, 2022, 211:118036. DOI: https://doi.org/10.1016/j.watres.2021.118036.
    [40]
    孙少静, 李博, 原安妮,等.多环芳烃(PAHs)在全国城市污水处理厂污泥中的残留现状[C]//持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会论文集, 2017:3.
    [41]
    曾巧云, 丁丹, 檀笑.中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 2018,9(27):1774-1782.
    [42]
    BOXALL A B, FOGG L, BLACKWELL P, et al. Veterinary medicines in the environment[J]. Reviews of Environmental Contamination and Toxicology, 2003:1-91.
    [43]
    EGHBALL B, WIENHOLD B, GILLEY J E, et al. Mineralization of manure nutrients[J]. Journal of Soil and Water Conservation, 2002, 57(6):470-473.
    [44]
    谭嘉怡,郝家厚,李羽志,等.施用污泥基营养激励素对微型汤姆番茄品质及土壤性质的影响[J/OL]. 中国环境科学:1-10. DOI: 10.19674/j.cnki.issn1000

    -6923.20230728.002.
  • Relative Articles

    [1]ZHOU Youwei, CHEN Jisheng, HE Lei, XING Meiyan. TRANSFORMATION CHARACTERISTICS OF CARBON AND NITROGEN IN SLUDGE-KITCHEN EARTHWORM COMPOST BASED ON LAND USE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 10-22. doi: 10.13205/j.hjgc.202402002
    [2]LUO Fei, LIAO Man, LIN Ting, XI Xiuping, CHEN Mengfang, SONG Jing. STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 159-166. doi: 10.13205/j.hjgc.202408019
    [3]QUAN Weici, YANG Kai, KAN Simeng, SUN Yelong, TIAN Yinghui, WAN Dong, ZHENG Lei, CHENG Hongguang. CHARACTERISTICS AND RESOURCE UTILIZATION OF DAMMED LAKE HYDROSTATIC SEDIMENTS IN UPSTREAM OF JINSHA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 1-7. doi: 10.13205/j.hjgc.202408001
    [4]ZHAO Shuiqian, DUAN Nina, TAN Xue jun, ZHANG Chen. ECONOMIC ANALYSIS ON “ANAEROBIC DIGESTION+LAND USE” TREATMENT AND DISPOSAL TECHNICAL ROUTE FOR MUNICIPAL SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 1-9. doi: 10.13205/j.hjgc.202402001
    [5]PEI Hao-peng, XU Yan, CHEN Rui, TU Qi, LI Hou-yu, SHI Rong-guang. DISTRIBUTION CHARACTERISTICS AND INFLUENCING FACTORS OF ANTIBIOTICS IN SOILS OF DIFFERENT LAND USE TYPES IN SUBURBS OF TIANJIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 166-173. doi: 10.13205/j.hjgc.202101026
    [6]ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012
    [7]XING Si-qi, WU Xu, YANG Hua-rong. COMPARATIVE STUDY ON LAND USE OF DEHYDRATED SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 196-201. doi: 10.13205/j.hjgc.202010031
    [14]Yang Yang Song Naiping Liu Bingru He Tonghui An Hui, . THE CURRENT STATUS AND PROGRESSES OF CHANGES IN LAND USE PATTERN ON AGRO-PASTORAL ECOTONE OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 158-162. doi: 10.13205/j.hjgc.201503031
    [18]STUDY OF CARBON EMISSION UNDER CHANGE IN LAND USE PATTERNS IN TAIHANG MOUNTAIN AREA OF HEBEI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 133-135. doi: 10.13205/j.hjgc.201412024
  • Cited by

    Periodical cited type(6)

    1. 徐金兰,许开慧,曹泽壮,代佳楠,李峰森,白文广,荣悦彤,薛淑君. 预氧化联合激活剂促进微生物长效降解土壤中烷烃的研究. 环境科学研究. 2024(07): 1561-1572 .
    2. 徐佰青,王雨,张雷,王文祥,李爱民,单广波. 腐殖酸的人工合成及其在环境污染修复中的研究进展. 环境工程学报. 2024(07): 1768-1782 .
    3. 李时琛,周航海,姜丽佳,林晓云,章春芳,李艳红. 沿海滩涂石油污染生物修复技术. 安全与环境工程. 2022(02): 166-173 .
    4. 郑瑾,韩瑞瑞,李丹丹,王馨妤,高春阳,杜显元,张晓飞,邹德勋. 过氧化尿素与微生物联合修复石油污染土壤. 化工进展. 2022(09): 5085-5093 .
    5. 周霞萍,梁圣模,沈天瑞,王玉诺,刘泽. 创新腐植酸产品工艺开展“碳预算”“碳达峰”“碳中和”示例分析. 腐植酸. 2021(03): 61-66 .
    6. 刘维涛,李剑涛,郑泽其,李法云. 微生物固定化技术修复石油烃污染土壤. 应用技术学报. 2021(04): 339-347 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.7 %FULLTEXT: 21.7 %META: 75.7 %META: 75.7 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.4 %其他: 17.4 %其他: 0.4 %其他: 0.4 %Falls Church: 0.4 %Falls Church: 0.4 %上海: 0.9 %上海: 0.9 %东莞: 0.4 %东莞: 0.4 %丽水: 0.4 %丽水: 0.4 %保定: 0.4 %保定: 0.4 %六安: 0.4 %六安: 0.4 %内江: 0.9 %内江: 0.9 %北京: 0.4 %北京: 0.4 %南京: 5.7 %南京: 5.7 %南通: 0.4 %南通: 0.4 %合肥: 0.4 %合肥: 0.4 %吉林: 0.4 %吉林: 0.4 %大同: 0.9 %大同: 0.9 %大连: 0.4 %大连: 0.4 %太原: 0.9 %太原: 0.9 %宣城: 0.4 %宣城: 0.4 %常德: 0.9 %常德: 0.9 %广州: 1.3 %广州: 1.3 %开封: 0.4 %开封: 0.4 %张家口: 0.9 %张家口: 0.9 %成都: 0.9 %成都: 0.9 %扬州: 0.4 %扬州: 0.4 %无锡: 3.5 %无锡: 3.5 %昆明: 3.0 %昆明: 3.0 %晋城: 0.4 %晋城: 0.4 %杭州: 0.4 %杭州: 0.4 %格兰特县: 1.3 %格兰特县: 1.3 %武汉: 1.7 %武汉: 1.7 %洛杉矶: 0.4 %洛杉矶: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 2.2 %漯河: 2.2 %石家庄: 0.9 %石家庄: 0.9 %芒廷维尤: 25.7 %芒廷维尤: 25.7 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.9 %苏州: 0.9 %荆门: 0.4 %荆门: 0.4 %蚌埠: 2.6 %蚌埠: 2.6 %衢州: 0.4 %衢州: 0.4 %西宁: 10.9 %西宁: 10.9 %贵阳: 1.7 %贵阳: 1.7 %运城: 1.7 %运城: 1.7 %遵义: 0.4 %遵义: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.9 %重庆: 0.9 %阳江: 0.4 %阳江: 0.4 %其他其他Falls Church上海东莞丽水保定六安内江北京南京南通合肥吉林大同大连太原宣城常德广州开封张家口成都扬州无锡昆明晋城杭州格兰特县武汉洛杉矶温州湖州漯河石家庄芒廷维尤芜湖芝加哥苏州荆门蚌埠衢州西宁贵阳运城遵义郑州重庆阳江

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(7) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return