Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Baocun, ZHOU Jiti, JIN Ruofei, TIAN Tian, CUI Tiantian. ALKALINE-THERMAL HYDROLYSIS OF SEWAGE SLUDGE DIGESTATE AND ITS PERFORMANCE IN ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 166-173. doi: 10.13205/j.hjgc.202309020
Citation: LIU Baocun, ZHOU Jiti, JIN Ruofei, TIAN Tian, CUI Tiantian. ALKALINE-THERMAL HYDROLYSIS OF SEWAGE SLUDGE DIGESTATE AND ITS PERFORMANCE IN ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 166-173. doi: 10.13205/j.hjgc.202309020

ALKALINE-THERMAL HYDROLYSIS OF SEWAGE SLUDGE DIGESTATE AND ITS PERFORMANCE IN ANAEROBIC FERMENTATION

doi: 10.13205/j.hjgc.202309020
  • Received Date: 2023-04-06
    Available Online: 2023-11-15
  • To recover and reuse the organic matter in sewage sludge digestate, this work adopted alkaline-thermal hydrolysis to treat the digestate, exploring the effects of different conditions on its disintegration and organics dissolution efficiency. The optimal conditions for alkaline-thermal hydrolysis of sewage sludge digestate were determined as pH=13, T=80℃, and t=8 h. Under these conditions, the disintegration efficiency of sewage sludge digestate achieved 40.9%, with the dissolution efficiency of COD, protein, and polysaccharide of 722.2, 79.7, and 73.7 mg/g VSS, respectively. The sewage sludge digestate after alkaline-thermal hydrolysis was used as substrates for anaerobic fermentation to produce methane. The effect of initial pH on anaerobic fermentation was further investigated. It was found that the best methane yield was achieved at the initial pH of 13, and the COD removal efficiency was 61.1% with a methane yield of 65.0 mL/g VSS and a methane proportion of 81.0% in the produced biogas. This work confirms that alkaline-thermal hydrolysis can improve the biodegradability of sewage sludge digestate, and its potential in producing methane through anaerobic fermentation.
  • [1]
    戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020,72(6):30-34.
    [2]
    黄慧, 高磊. 污水处理厂污泥处理处置现状及利用分析[J]. 能源与节能, 2022(9):46-48.
    [3]
    李小伟, 董滨, 戴晓虎. 污泥沼渣深度处理过程中有机物变化规律研究[Z]. 杭州, 2017.
    [4]
    赵丹, 韩晓宇, 张树军, 等. PN/A-颗粒污泥工艺处理热水解污泥消化液[J]. 中国环境科学, 2022,42(11):5108-5116.
    [5]
    邹瑜, 张国权, 徐晓晨, 等. SNAD-藻类工艺在污泥消化液处理中的应用[J]. 中国给水排水, 2021,37(15):14-20.
    [6]
    SHI S, FAN X, HE X, et al. Enhanced nitritation/denitritation and potential mechanism in an electrochemically assisted sequencing batch biofilm reactor treating sludge digester liquor with extremely low C/N ratios[J]. Bioresource Technology, 2022,363:127936.
    [7]
    ESKICIOGLU C, GALVAGNO G, CIMON C. Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants[J]. Bioresource Technology, 2018,268:797-810.
    [8]
    张新颖, 孔翎维, 刘晓艳, 等. 一种采用污泥沼渣制备绿化植物基质的方法:CN110235742A[P]. 2019.
    [9]
    白玲, 李倩, 邓芸, 等. 沼渣与餐厨废弃物、牛粪联合堆肥的腐殖化进程研究[J]. 农业机械学报, 2019,50(8):331-338.
    [10]
    戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012,48(2):1-5.
    [11]
    AWISZUS S, MEISSNER K, REYER S, et al. Gas-releasing potential of biogas digestate[J]. BIOFUELS-UK, 2021,12(6):689-695.
    [12]
    SAMBUSITI C, MONLAU F, FICARA E, et al. Comparison of various post-treatments for recovering methane from agricultural digestate[J]. Fuel Processing Technology, 2015,137:359-365.
    [13]
    WISNIEWSKI D, GOLASZEWSKI J, BIALOWIEC A. The pyrolysis and gasification of digestate from agricultural biogas plant[J]. Archives of Environmental Protection, 2015,41(3):70-75.
    [14]
    RUIZ H A, RODRIGUEZ-JASSO R M, FERNANDES B D, et al. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept:a review[J]. Renewable & Sustainable Energy Reviews, 2013,21:35-51.
    [15]
    GARROTE G, DOMINGUEZ H, PARAJO J C. Hydrothermal processing of lignocellulosic materials[J]. Holz Als Roh-Und Werkstoff, 1999,57(3):191-202.
    [16]
    肖本益, 刘俊新. 不同预处理方法对剩余污泥性质的影响研究[J]. 环境科学, 2008(2):2327-2331.
    [17]
    严媛媛, 陈汉龙, 何群彪, 等. 热碱预处理改善低有机质污泥厌氧消化性能的效果[J]. 中国给水排水, 2012,28(23):9-13.
    [18]
    赵虹焰, 周集体, 金若菲, 等. 热碱法破解污泥动态实验的条件优化[J]. 环境工程, 2020,38(7):71-74

    , 121.
    [19]
    国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
    [20]
    孙士青, 王少杰, 李秋顺, 等. 考马斯亮蓝法快速测定乳品中蛋白质含量[J]. 山东科学, 2011,24(6):53-55.
    [21]
    姜琼, 谢妤. 苯酚-硫酸法测定多糖方法的改进[J]. 江苏农业科学, 2013(12):316-317, 318.
    [22]
    INOUE S, SAWAYAMA S, OGI T, et al. Organic composition of liquidized sewage sludge[J]. BIOMASS & BIOENERGY, 1996,10(1):37-40.
    [23]
    LEFEBVRE D, DOSSAT-Letisse V, LEFEBVRE X, et al. Fate of organic matter during moderate heat treatment of sludge:kinetics of biopolymer and hydrolytic activity release and impact on sludge reduction by anaerobic digestion[J]. Water Science and Technology, 2014,69(9):1828-1833.
    [24]
    宜慧, 韩芸, 李玉友, 等. 碱解+低温水热预处理改善剩余污泥中温厌氧消化性能工艺[J]. 环境工程学报, 2014,8(9):3927-3932.
    [25]
    RUGHOONUNDUN H, GRANDA C, MOHEE R, et al. Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production[J]. Waste Management, 2010,30(8):1614-1621.
    [26]
    何培培, 余光辉, 邵立明, 等. 污泥中蛋白质和多糖的分布对脱水性能的影响[J]. 环境科学, 2008,29(12):3457-3461.
    [27]
    胡亚东, 袁月祥, 闫志英, 等. 一株生长pH较宽的产甲烷菌分离与系统发育分析[J]. 应用与环境生物学报, 2009,15(4):554-558.
    [28]
    MA S, HU H, WANG J, et al. The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production[J]. Water Research, 2019,164:114924.
    [29]
    GOSWAMI R, CHATTOPADHYAY P, SHOME A, et al. An overview of physico-chemical mechanisms of biogas production by microbial communities:a step towards sustainable waste management[J]. 3 Biotech, 2016,6(1):12-72.
    [30]
    WU H, GAO J, YANG D, et al. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism[J]. Chemical Engineering Journal, 2010,160(1):1-7.
    [31]
    王太恒, 陈彩霞, 王旭东, 等. 不同剂量臭氧预处理污泥厌氧发酵产甲烷效果评价[J]. 中国海洋大学学报(自然科学版), 2021,51(11):59-65, 93.
    [32]
    李秋实, 郭祥, 刘彬, 等. 市政污泥与玉米秸秆混合高温厌氧发酵产甲烷研究[J]. 环境工程, 2022,40(7):139-145.
    [33]
    常城, 明磊强, 牟云飞, 等. 厨余垃圾与污泥厌氧发酵产甲烷的协同作用[J]. 中国环境科学, 2022,42(3):1259-1266.
  • Relative Articles

    [1]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [2]TAN Jun-jie, LI Li-jun, LI Xue-jie, HAN Tian-fang, HU Xiao-min, ZHAO Xin. ISOLATION OF A HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFYING STRAIN GNR AND ITS APPLICATION OF AMMONIA REMOVAL OF SWINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 21-26. doi: 10.13205/j.hjgc.202102004
    [3]CHEN Jun-li, ZHANG Miao-miao, ZHANG Shu-nan, XIAO Run-lin, WU Jin-shui, LIU Feng. HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFICATION CHARACTERISTICS OF ALCALIGENES FAECALIS WT14 AND ITS POTENTIAL APPLICATION IN AMMONIA-RICH WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 27-32,40. doi: 10.13205/j.hjgc.202102005
    [4]LI Yi-yi, ZHAO Yong-jiao, LIU Fang, LI Xue-jie, ZHAO Xin, HU Xiao-min. ANALYSIS ON THE HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFICATION CHARACTERISTICS OF THE NEW SPECIES OF MASSILIA NEUIANA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 103-107. doi: 10.13205/j.hjgc.202010016
    [5]SI Guang-zheng, YANG Qing-chen, DONG Jia, YAN Tian-ge, CHANG Jun-jun, CHEN Jin-quan. ISOLATION AND CHARACTERIZATION OF A STAIN OF MERCURY VOLATIZING FUNGUS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 247-252. doi: 10.13205/j.hjgc.202009040
    [6]ZHU Xiao-ming, ZHAO Dong-hua, RUAN Xiao-hong. IDENTIFICATION AND NITROGEN REMOVAL CHARACTERISTICS OF A HETEROTROPHIC NITRIFICATION-AEROBIC DENITRIFYING STRAIN ISOLATED FROM UNCONFINED AQUIFER POROUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 43-48. doi: 10.13205/j.hjgc.202005008
    [12]Tu Weiling, Hu Zhanbo, Liang Yicong, Lu Hui, Liu Kaihua, Jiang Zhe. EXPERIMENTAL STUDY ON REMEDIATION OF SEDIMENTS IN URBAN BLACK-ODOROUS RIVERS BY DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 5-9. doi: 10.13205/j.hjgc.201510002
  • Cited by

    Periodical cited type(2)

    1. 康媛媛,吕幽. 水泥窑协同处置污染土壤的劣势及管控措施探讨. 科技资讯. 2024(14): 179-181 .
    2. 樊美蓉,张尚毅,杨延梅,杨金忠,杨玉飞,谢真. 水泥窑热工条件下十溴二苯醚的热分解规律. 环境工程. 2022(10): 98-104+111 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 4.3 %FULLTEXT: 4.3 %META: 95.7 %META: 95.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.7 %其他: 10.7 %Baden: 0.7 %Baden: 0.7 %China: 6.4 %China: 6.4 %[]: 1.4 %[]: 1.4 %上海: 0.7 %上海: 0.7 %北京: 6.4 %北京: 6.4 %十堰: 0.7 %十堰: 0.7 %台州: 0.7 %台州: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %圣路易斯: 0.7 %圣路易斯: 0.7 %埃克塞特: 1.4 %埃克塞特: 1.4 %大连: 0.7 %大连: 0.7 %天津: 0.7 %天津: 0.7 %常州: 0.7 %常州: 0.7 %杭州: 0.7 %杭州: 0.7 %棕榈海岸: 0.7 %棕榈海岸: 0.7 %温州: 0.7 %温州: 0.7 %湖州: 2.1 %湖州: 2.1 %漯河: 2.1 %漯河: 2.1 %福州: 0.7 %福州: 0.7 %芒廷维尤: 21.4 %芒廷维尤: 21.4 %苏州: 0.7 %苏州: 0.7 %衢州: 1.4 %衢州: 1.4 %西宁: 32.9 %西宁: 32.9 %郑州: 0.7 %郑州: 0.7 %重庆: 2.9 %重庆: 2.9 %其他BadenChina[]上海北京十堰台州嘉兴圣路易斯埃克塞特大连天津常州杭州棕榈海岸温州湖州漯河福州芒廷维尤苏州衢州西宁郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(4) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return