Citation: | ZHOU Ming, ZHONG Chen, ZHAO He, CAO Hongbin. RESEARCH PROGRESS ON OXIDATIVE DEGRADATION, REACTION PATHWAYS AND PRODUCT TOXICITY OF SULFONAMIDES IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 187-193. doi: 10.13205/j.hjgc.202309023 |
[1] |
王大鹏,张娴,颜昌宙.4种磺胺类药物及乙酰化代谢物在污水处理厂的去除及机制[J].环境科学,2019,40(3):1347-1352.
|
[2] |
綦峥,杨红,张铁林,等.畜牧场中磺胺类抗生素及其抗性基因的空间分布规律[J].生态毒理学报,2021,16(1):215-222.
|
[3] |
李婧,崔诗瑶,曹海艳,等.蔬菜对水中磺胺甲恶唑的吸收与累积作用[J].畜牧与饲料科学,2016,37(9):12-14
,18.
|
[4] |
李婧,崔诗瑶,曹海艳,等.蔬菜对水中磺胺甲恶唑的吸收与累积作用[J].畜牧与饲料科学,2016,37(9):12-14
,18.
|
[5] |
LIU X,HUANG F,YU Y, et al. Determination and toxicity evaluation of the generated byproducts from sulfamethazine degradation during catalytic oxidation process[J].Chemosphere, 2019,226:103-109.
|
[6] |
LV Y, LI Y, LIU X,et al.Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa):growth, health risks and silicon mitigation[J].Environmental Pollution, 2021, 286:117321.DOI: 10.1016/j.envpol.2021.117321.
|
[7] |
张梦雪,赵义良,苏青,等.水产品中磺胺类药物残留危害及常用检测方法[J].今日畜牧兽医, 2019, 35(7):2.
|
[8] |
LOU X, LIU Z, FANG C, et al. Fate of sulfamethoxazole and potential formation of haloacetic acids during chlorine disinfection process in aquaculture water[J].Environmental Research, 2021,204:111958-111958. DOI: 10.1016/j.envres.2021.111958.
|
[9] |
ZHANG C, TIAN S, QIN F,et al.Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation:experiments and theoretical calculation[J].Water Research, 2021, 194(7):116915.DOI: 10.1016/j.watres.2021.116915.
|
[10] |
FENG M, BAUM J C, NESNAS N,et al.Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by Ferrate(Ⅵ):kinetics and mechanistic insight into SO2 extrusion[J].Environmental Science & Technology, 2019, 53(5):2695-2704.
|
[11] |
DAR A A, SHAD A, QU R,et al.Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2:kinetics, degradation products, and reaction pathways[J/OL].Chemical Engineering Journal, 2020, 398:125357.DOI: 10.1016/j.cej.2020.125357.
|
[12] |
WANG J,ZHUAN R,CHU L. The occurrence, distribution and degradation of antibiotics by ionizing radiation:an overview[J]. Science of the Total Environment,2019,646:1385-1397.
|
[13] |
LIU X,GAROMA T,CHEN Z, et al.SMX degradation by ozonation and UV radiation:a kinetic study[J].Chemosphere, 2012, 87(10):1134-1140.
|
[14] |
LIU, X S, et al.Oxidation of sulfadiazine and sulfamethoxazole through O3, UV, and UV/O3 processes[J]. Desalination and Water Treatment, 2021, 222:346-353.
|
[15] |
FAN Y,JI Y,KONG D, et al.Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J].Journal of Hazardous Materials, 2015, 300:39-47.
|
[16] |
FU J,FENG L,LIU Y,et al.Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation[J]. Chemosphere, 2022, 287:132094.DOI: 10.1016/j.chemosphere.2021.132094.
|
[17] |
XIU W,WEN J,et al.Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process[J].Chemosphere, 2018,212:365-375.
|
[18] |
FENG Y, et al.Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280:514-524.
|
[19] |
WANG Z, WANG J, XIONG B,et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition:efficiency and mechanisms[J]. Environmental Science & Technology,2020,54(1):464-475.
|
[20] |
HU L H, et al. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis[J]. Water Research, 2007, 41(12):2612-2626.
|
[21] |
QI C,LIU X,LIN C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate:kinetics, mechanism and acute toxicity[J]. Chemical Engineering Journal,2014,249:6-14.
|
[22] |
MILH H, CABOOTER D, DEWIL R. Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation:radical identification and elucidation of the degradation mechanism[J].Chemical Engineering Journal, 2021, 422:130457.DOI: 10.1016/j.cej.2021.130457.
|
[23] |
ZAJICEK P, et al.Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(Ⅵ):the case study of atrazine and iodosulfuron with kinetics and degradation products[J]. Separation and Purification Technology, 2015, 156:1041-1046.
|
[24] |
MAO Y X,LIANG J L,JI F Y, et al. Accelerated degradation of pharmaceuticals by ferrous ion/chlorine process:roles of Fe(Ⅳ) and reactive chlorine species[J]. Science of the Total Environment,2021,787(1):147584.DOI: 10.1016/j.scitotenv.2021.147584.
|
[25] |
ALFONS P,JONGSAY Y. Population ageing and its implications on aggregate health care demand:empirical evidence from 22 OECD countries[J]. International Journal of Health Care Finance and Economics,2009,9(4):391-402.
|
[26] |
WANG J, WANG Z, CHENG Y,et al.Molybdenum disulfide (MoS2):a novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J].Water Research, 2021(1/2):117291.DOI: 10.1016/j.watres.2021.117291.
|
[27] |
BAO Y, LEE W J, Guan C,et al.Highly efficient activation of peroxymonosulfate by bismuth oxybromide for sulfamethoxazole degradation under ambient conditions:synthesis, performance, kinetics and mechanisms[J].Separation and Purification Technology, 2021, 276:119203. DOI: 10.1016/j.seppur.2021.119203.
|
[28] |
JI Y,LU J,et al. Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water:kinetics, mechanisms, and implications for water treatment[J]. Water Research,2018,147:82-90.
|
[29] |
YANG X, DING X, ZHOU L,et al.Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism[J].Chemosphere, 2020, 263(11):128194.DOI: 10.1016/j.chemosphere.2020.128194.
|
[30] |
JI Y, SHI Y, WANG L,et al.Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine:formation of SO2 extrusion products and effects of natural organic matter[J].Science of the Total Environment, 2017, 593-594:704.
|
[31] |
WU J X, WANG B, BLANEY L,et al.Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron[J].Chemical Engineering Journal, 2019,361:99-108.
|
[32] |
TAO X, HUANG P, CHEN T, et al.In-situ construction of Co(OH)2 nanoparticles decorated urchin-like WO3 for highly efficient degradation of sulfachloropyridazine via peroxymonosulfate activation:intermediates and DFT calculation[J]. Chemical Engineering Journal, 2020, 395:125168.DOI: 10.1016/j.cej.2020.125186.
|
[33] |
MIRZAEI A, EDDAN M, STEPHANIE R, et al.Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment[J].Chemical Engineering Journal, 2021, 422:130507.DOI: 10.1016/j.cej.2021.130507.
|
[34] |
SONG Y, JIANG J, MA J,et al.Enhanced transformation of sulfonamide antibiotics by manganese(Ⅳ) oxide in the presence of model humic constituents[J].Water Research, 2019, 153(APR.15):200-207.
|
[35] |
GUO Q, ZHOU Y, PANG S Y,et al.Transformation and detoxification of sulfamethoxazole by permanganate (Mn(Ⅶ)) in the presence of phenolic humic constituents[J].Chemical Engineering Journal, 2020, 413:127534.DOI: 10.1016/j.cej.2020.127534.
|
[36] |
ZHAO J,SUN Y,ZHANG Y,et al.Heterogeneous activation of persulfate by activated carbon supported iron for efficient amoxicillin degradation[J].Environmental Technology & Innovation, 2020, 21(8):101259.DOI: 10.1016/j.eti.2020.101259.
|
[37] |
SUN X,FENG M,DONG S, et al. Removal of sulfachloropyridazine by ferrate(Ⅵ):kinetics, reaction pathways, biodegradation, and toxicity evaluation[J]. Chemical Engineering Journal,2019,372:742-751.
|
[38] |
ACOSTA-RANGEL A, et al.Oxidation of sulfonamides by ferrate(Ⅵ):reaction kinetics, transformation byproducts and toxicity assesment[J].Journal of Environmental Management, 255:109927.DOI: 10.1016/j.jenvman.2019.109927.
|
[39] |
YANG Y, LU X, JIANG J,et al.Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS):formation of oxidation products and effect of bicarbonate[J].Water Research, 2017, 118:196.DOI: 10.1016/j.watres.2017.03.054.
|
[40] |
MAJEWSKY M, WAGNER D, DELAY M,et al.Antibacterial activity of sulfamethoxazole transformation products (TPs):general relevance for sulfonamide TPs modified at the para position[J].Chemical Research in Toxicology, 2014, 27(10):1821-1828.
|
[41] |
RODRIGUEZ-CHUECA J, ROCHA S, GIUSTINA V D,et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs:removal or persistence of antibiotics and antibiotic resistance genes?[J]. Science of the Total Environment,2018,652:1051-1061.
|
[42] |
JI Z, SU C, ZHOU J,et al.Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants[J].Chemical Engineering Journal, 2017.DOI: 10.1016/j.cej.2017.02.076.
|
[43] |
SHEN Y,CHU L, ZHUAN R,et al. Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation:a new insight into a sustainable management of antibiotic fermentative residuals[J]. Journal of Environmental Management,2019,232:171-178.DOI: 10.1016/j.jenvman.2018.11.050.
|
[44] |
CHU L, WANG J, HE S,et al.Treatment of pharmaceutical wastewater by ionizing radiation:removal of antibiotics, antimicrobial resistance genes and antimicrobial activity[J].Journal of Hazardous Materials, 2021(1):125724.DOI: 10.1016/j.jhazmat.2021.125724.
|
[45] |
STARLING M C V M, de MENDONCA NETO R P, PIRES G F F, et al.Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes:achievements and perspectives[J].Science of the Total Environment, 2021,786:147448.DOI: 10.1016/j.scitotenv.2021.147448.
|
[46] |
ZHANG G, LI W, CHEN S,et al.Problems of conventional disinfection and new sterilization methods for antibiotic resistance control[J].Chemosphere, 2020, 254:126831.DOI: 10.1016/j.chemosphere.2020.126831.
|
[47] |
THAKALI O.Removal of antibiotic resistance genes at two conventional wastewater treatment plants of Louisiana, USA[J].Water, 2020, 12(6):1729.DOI: 10.3390/w12061729.
|
[48] |
LIN X, RUAN J, HUANG L,et al. Comparison of the elimination effectiveness of tetracycline and AmpC beta-lactamase resistance genes in a municipal wastewater treatment plant using four parallel processes[J]. Ecotoxicology,2020,30(8):1586-1597.
|