Citation: | LI Renshi, DENG Hao, JIN Guyu, XU Zhenyu, HUANG An, YAO Lu, HE Yabai, KAN Ruifeng. RESEARCH ON LASER HETERODYNE SPECTRUM TELEMETRY TECHNOLOGY BASED ON LOCAL OSCILLATOR LASER INTENSITY MODULATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 9-13. doi: 10.13205/j.hjgc.202310002 |
[1] |
PROTOPOPOV V V.Laser Heterodyning[M].Springer, 2009.
|
[2] |
谈图, 曹振松, 王贵师, 等.4.4μm中红外激光外差光谱探测技术研究[J].光谱学与光谱分析, 2015, 35(6):1516-1519.
|
[3] |
邓昊.基于激光外差光谱技术的主要温室气体柱浓度测量方法研究[D].合肥:中国科学技术大学, 2020.
|
[4] |
王晶晶.大气温室气体近红外激光外差光谱遥感探测技术及应用研究[D].合肥:中国科学技术大学, 2021.
|
[5] |
PARVITTE B, ZÉNINARI V, THIÉBEAUX C, et al.Infrared laser heterodyne systems[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004, 60(5):1193-1213.
|
[6] |
WEIDMANN D, TSAI T, MACLEOD N A, et al.Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry[J].Optics letters, 2011, 36(11):1951-1953.
|
[7] |
DENG H, YANG C, XU Z, et al.Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column[J].Optics Express, 2021, 29(2):2003-2013.
|
[8] |
DENG H, LI R, LIU H, et al.Optical amplification enables a huge sensitivity improvement to laser heterodyne radiometers for high-resolution measurements of atmospheric gases[J].Optics Letters, 2022, 47(17):4335-4338.
|
[9] |
WANG J, SUN C, WANG G, et al.A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4[J].Optics and Lasers in Engineering, 2020, 129:106083.
|
[10] |
SHEN F, WANG G, XUE Z, et al.Impact of lock-in time constant on remote monitoring of trace gas in the atmospheric column using laser heterodyne radiometer (LHR)[J].Remote Sensing, 2022, 14(12):2923.
|
[11] |
邓昊, 杨晨光, 管林强, 等.近红外外差光谱温室气体柱浓度的探测方法[J].Chinese Journal of Lasers, 2019, 46(3):0311001.
|
[12] |
薛正跃, 李竣, 刘笑海, 等.基于激光外差探测的大气N2O吸收光谱测量与廓线反演[J].物理学报, 2021, 70(21):309-317.
|
[13] |
王晶晶, 谈图, 王贵师, 等.全光纤双通道大气温室气体激光外差光谱探测技术研究[J].光谱学与光谱分析, 2021, 41(2):354-359.
|
[14] |
XUE Z, SHEN F, LI J, et al.MEMS modulator-based mid-infrared laser heterodyne radiometer for atmospheric remote sensing[J].Frontiers in Physics, 2022, 10:945995.
|
[15] |
XUE Z, SHEN F, LI J, et al.A MEMS modulator-based dual-channel mid-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CH4, H2O and N2O[J].Optics Express, 2022, 30(18):31828-31839.
|
[16] |
WILSON E L, DIGREGORIO A, RIOT V J, et al.A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat[J].Measurement Science and Technology, 2017, 28(3):035902.
|
[17] |
MARTÍN-MATEOS P, BONILLA-MANRIQUE O E, GUTIÉRREZ-ESCOBERO C.Wavelength modulation laser heterodyne radiometry[J].Optics letters, 2018, 43(12):3009-3012.
|
[18] |
MARTÍN-MATEOS P, GENNER A, MOSER H, et al.Thermal Infrared Laser Heterodyne Radiometer based on a Wavelength Modulated External Cavity Quantum Cascade Laser;proceedings of the Optics and Photonics for Sensing the Environment[C]//F, 2019, Optica Publishing Group.
|
[19] |
MARTÍN-MATEOS P, GENNER A, MOSER H, et al.Implementation and characterization of a thermal infrared laser heterodyne radiometer based on a wavelength modulated local oscillator laser[J].Optics express, 2019, 27(11):15575-15584.
|
[20] |
DENG H, LI M, HE Y, et al.Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO2 column absorption measurements[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 230:118071.
|
[21] |
庞亚军, 高龙, 王春晖.2μm双平衡式外差探测IQ解调与信噪比研究[J].Chinese Journal of Lasers, 2012, 39(1
):114001-114001.
|
[22] |
李玉.基于平衡探测器的光外差探测系统研究[D].长沙:国防科技大学, 2015.
|
[23] |
苑泽.ROF链路中平衡探测降低RIN噪声的研究[D].成都:电子科技大学, 2017.
|