Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
ZHAO Bingjie, WANG Chunbo, GAO Pengyuan, ZUO Weikun, ZHI Ziwei, XUE Bingxin. ANALYSIS OF SPATIOTEMPORAL CHARACTERISTICS AND DRIVING FACTORS OF ATMOSPHERIC CO2 CONCENTRATION BASED ON SATELLITE REMOTE SENSING: A CASE STUDY OF HEBEI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 30-36. doi: 10.13205/j.hjgc.202310005
Citation: ZHAO Bingjie, WANG Chunbo, GAO Pengyuan, ZUO Weikun, ZHI Ziwei, XUE Bingxin. ANALYSIS OF SPATIOTEMPORAL CHARACTERISTICS AND DRIVING FACTORS OF ATMOSPHERIC CO2 CONCENTRATION BASED ON SATELLITE REMOTE SENSING: A CASE STUDY OF HEBEI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 30-36. doi: 10.13205/j.hjgc.202310005

ANALYSIS OF SPATIOTEMPORAL CHARACTERISTICS AND DRIVING FACTORS OF ATMOSPHERIC CO2 CONCENTRATION BASED ON SATELLITE REMOTE SENSING: A CASE STUDY OF HEBEI PROVINCE

doi: 10.13205/j.hjgc.202310005
  • Received Date: 2023-07-14
    Available Online: 2023-12-26
  • Carbon dioxide (CO2) is the main greenhouse gas that causes the greenhouse effect, and satellite remote sensing provides a new technique for CO2 monitoring. Based on the carbon dioxide column average dry air mixing ratio (XCO2) data and mathematical statistical methods, such as autoregressive model, spatial autocorrelation, and hot and cold spot analysis, we analyzed the spatiotemporal evolution characteristics of XCO2 concentration in Hebei Province. Pearson correlation coefficient and geographical weighted regression were used to analyze the driving effects of natural and human activities on XCO2 concentration. The results were as follows:1) the average monthly XCO2 concentration in Hebei province varies periodically, reaching a peak in April and a trough in August. In addition, it is higher in winter and spring, lower in summer and autumn. 2) the time series of XCO2 concentration in Hebei province has autocorrelation, and the best lag time is 2 months. 3) the concentration of XCO2 in Hebei province is significantly positively correlated in space. The overall distribution pattern of XCO2 concentration was lower in the northwest and higher in the southeast, and clustered high-value regions were formed in southern, central, and northern Hebei. 4) geography, vegetation and meteorology have significant negative effects on XCO2 concentration. The tri-variate combination of digital elevation model (DEM), normalized difference vegetation index (NDVI) and precipitation and the bivariate combination of precipitation and DEM can better explain XCO2 concentration. The study showed that CO2 concentration can be inhibited by increasing vegetation cover and precipitation, and it can provide a scientific reference for carbon emission reduction measures in Hebei Province.
  • loading
  • [1]
    张强, 韩永翔, 宋连春.全球气候变化及其影响因素研究进展综述[J].地球科学进展, 2005(9):990-998.
    [2]
    吴兑.温室气体与温室效应[M].北京:气象出版社, 2003.
    [3]
    SCHUUR E A, MCGUIRE A D, SCHADEL C, et al.Climate change and the permafrost carbon feedback[J].Nature, 2015, 520(7546):171-179.
    [4]
    杨晓钰, 王中挺, 潘光, 等.卫星遥感温室气体的大气观测技术进展[J].大气与环境光学学报, 2022, 17(6):581-597.
    [5]
    WANG Z T, MA P F, ZHANG L J, et al.Systematics of atmospheric environment monitoring in China via satellite remote sensing[J].Air Quality, Atmosphere & Health, 2021, 14(2):157-169.
    [6]
    曹良中, 叶辉, 张力, 等.中亚近地面CO2浓度时空分布及驱动因子分析[J].遥感信息, 2021, 36(6):51-59.
    [7]
    邓安健, 郭海波, 胡洁, 等.GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J].遥感学报, 2020, 24(3):319-325.
    [8]
    何月, 绳梦雅, 雷莉萍, 等.长三角地区大气NO2和CO2浓度的时空变化及驱动因子分析[J].中国环境科学, 2022, 42(8):3544-3553.
    [9]
    莫祝坤, 李明泽, 王斌.黑龙江省森林大气CO2施肥效应的时空变化趋势[J].东北林业大学学报, 2022, 50(9):71-77.

    [10]
    KUMAR K R, REVADEKAR J V, TIWARI Y K.AIRS retrieved CO2 and its association with climatic parameters over India during 2004-2011[J].Science of the Total Environment, 2014, 476-477(1):79-89.
    [11]
    NOEL S, REUTER M, BUCHWITZ M, et al.Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm[J].Atmospheric Measurement Techniques, 2022(11):15.
    [12]
    PEIRO H, CROWELL S, SCHUH A, et al.Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2(OCO-2) version 9 and in situ data and comparison to OCO-2 version 7[J].Atmospheric Chemistry and Physics, 2022, 22(2):1097-1130.
    [13]
    肖钟湧, 陈颖锋, 林晓凤, 等.基于多源卫星遥感数据的中国2003-2018年CO2时空变化研究[J].遥感学报, 2022, 26(12):2486-2496.
    [14]
    武红, 谷树忠, 周洪, 等.河北省能源消费、碳排放与经济增长的关系[J].资源科学, 2011, 33(10):9.
    [15]
    JIN C L, XUE Y, JIANG X X, et al.A long-term global XCO2 dataset:ensemble of satellite products[J/OL].Atmospheric Research, 2022, 279:106385.https://doi.org/10.1016/j.atmosres.2022.106385.
    [16]
    TAKAKU, JUNICHI, FUTAMURA, et al.High resolution DEM generation from ALOS PRISM data-simulation and evaluation[J].2004(1):405-407.
    [17]
    MCNICHOLL B, LEE Y H, CAMPBELL A G, et al.Evaluating the reliability of air temperature from ERA5 reanalysis data[J].IEEE Geoscience and Remote Sensing Letters, 2022, 19.
    [18]
    LI Y Q, LI X J, LIAN J, et al.Temporal and spatial variation of vegetation coverage in Beijing-Tianjin-Hebei Metropolis Circle with MODIS vegetation indices data product[J].Key Engineering Materials, 2012, 500:123-129.
    [19]
    张树京.时间序列分析简明教程[M].北京:清华大学出版社, 2003.
    [20]
    YIN C, HE Q, LIU Y, et al.Inequality of public health and its role in spatial accessibility to medical facilities in China[J].Applied Geography, 2018, 92:50-62.
    [21]
    YE Weifeng, MA Zhongyu, HA Xiuzhen.Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese Cities[J].Science of the Total Environment, 2018, 631/632:524-533.
    [22]
    GETIS A, ORD J K.The analysis of spatial association by use of distance statistics[J].Geographical Analysis, 1992.
    [23]
    ORD J K, GETIS A.Local spatial autocorrelation statistics:distributional issues and an application[J].Geographical Analysis, 2010, 27(4):286-306.
    [24]
    张世勍.基于地面监测和卫星遥感的中国大气甲烷浓度时空分布及其对人为排放的响应[D].上海:华东师范大学, 2022.
    [25]
    陶洋, 祝小钧, 杨柳.基于皮尔逊相关系数和信息熵的多传感器数据融合[J].小型微型计算机系统, 2023, 44(5):1075-1080.
    [26]
    BRUNSDON C, FOTHERINGHAM A S, CHARLTON M.Geographically weighted regression:a method for exploring spatial nonstationarity[J].Geographical Analysis, 1996, 28(4):281-298.
    [27]
    任杨千千, 连懿, 李海笑, 等.中国大陆CO2浓度时空分布特征及驱动因素[J].中国环境科学, 2023, 43(4):1919-1929.
    [28]
    加亦瑱, 陶明辉, 丁思佳, 等.基于卫星遥感的中国地区XCO2和XCH4时空分布研究[J].大气与环境光学学报, 2022, 17(6):679-692.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return