Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DONG Tao, JIN Ju-liang, WANG Zhen-long, LIU Meng, DONG Guo-qiang, SI Qiao-ling, WANG Min-jie. DYNAMIC DIAGNOSIS AND EVALUATION METHOD OF LAKE WATER ECOLOGICAL HEALTH BASED ON RISK MATRIX AND FIVE ELEMENT SUBTRACTION SET PAIR POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 90-96. doi: 10.13205/j.hjgc.202010014
Citation: WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021

CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU

doi: 10.13205/j.hjgc.202310021
  • Received Date: 2023-02-04
    Available Online: 2023-12-26
  • In the critical period of synergy between pollution reduction and carbon reduction in the 14th Five-Year Plan, the sewage treatment system is facing the problems of low accuracy and timeliness of carbon accounting, and the lack of effective analysis and evaluation tools for carbon emissions. Based on the pollutant reduction ratio of different processes of urban and industrial sewage treatment plants in Suzhou from 2001 to 2020, the time series data of localized carbon emission factors and carbon emissions were weighted and established. An extended Kaya identity factorization model of carbon emission in sewage treatment systems is constructed to quantitatively analyze the influence of seven factors, including technical effect, energy effect, sewage discharge intensity, industrial structure, economic effect, urbanization rate, and population size, on the change of carbon emission in sewage treatment plants. The study showed that carbon emissions of the sewage treatment system in Suzhou from 2001 to 2020 were 4306.6082 million tons of CO2-eq, CO2 was the main contributor, and the carbon emission factor was 1.3687~1.9499 kg CO2-eq/m3; reducing CO2 emissions from the sewage treatment process, and N2O emissions from the sludge disposal process was the breakthrough point; the economy and population scale effects were the main factors to promote the carbon emission increment of urban and industrial sewage treatment plants, respectively, and the technical effect was the decisive factor to restrain the reduction. Finally, suggestions are put forward, including the reduction of carbon emission in urban sewage treatment plants, the improvement of low energy consumption of sewage and low N2O emission technology of sludge, the promotion of water saving in the whole society, and the promotion of industrial upgrading by technological innovation.
  • [1]
    中国气象局气候变化中心.中国气候变化蓝皮书(2022)[M].北京:科学出版社, 2022.
    [2]
    中华人民共和国生态环境部.减污降碳协同增效实施方案[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202206/t20220617_985879.html.2022-6-10.
    [3]
    江苏省人民政府.江苏省碳达峰实施方案[EB/OL].http://3060.xujc.com/2023/0221/c6642a143402/page.htm.2022-10-3.
    [4]
    中华人民共和国生态环境部.全国污水集中处理设施清单(第二批)[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202011/t20201123_809271.html.2020-11-17.
    [5]
    张星.城镇生活污水处理系统碳排放研究[D].南京:南京信息工程大学, 2018.
    [6]
    王金鹤.城镇污水处理厂中温室气体的释放研究[D].济南:山东大学, 2011.
    [7]
    邱德志, 陈纯, 郭丽, 等.基于排放因子法的中国主要城市群城镇污水厂温室气体排放特征[J].环境工程, 2022, 40(6):116-122.
    [8]
    闫旭, 邱德志, 郭东丽, 等.中国城镇污水处理厂温室气体排放时空分布特征[J].环境科学, 2018, 39(3):1256-1263.
    [9]
    张成.重庆市城镇污水处理系统碳排放研究[D].重庆:重庆大学, 2011.
    [10]
    任福民, 毛联华, 阜葳, 等.中国城镇污水处理厂运行能耗影响因素研究[J].给水排水, 2015, 51(1):42-47.
    [11]
    FOLEY J, YUAN Z, KELLER J, et al.N2O and CH4 emission from wastewater collection and treatment systems:state of the science report and technical report[M].London:IWA Publishing, 2015.
    [12]
    石春力, 田永英, 黄海伟, 等.我国城镇污水处理碳排放核算方法研究综述[J].建设科技, 2021(11):39-43.
    [13]
    TANG M G, YANG Q F, PAN C Y, et al.Driving forces of industrial water pollutant emission from spatial-dynamic perspective in china:analysis based on Kaya equation and LMDI decomposition[J].Open Journal of Social Sciences, 2019, 7(10):132-143.
    [14]
    齐漫, 陈昆仑, 丁镭, 等.中国省域生活废水排放量的时空分布特征及驱动因素分析[J].地理与地理信息科学, 2016, 32(4):106-112.
    [15]
    蔡博峰, 高庆先, 李中华, 等.中国城市污水处理厂甲烷排放因子研究[J].中国人口·资源与环境, 2015, 25(4):118-124.
    [16]
    李莎.城市污水四种典型处理工艺N2O排放特征的研究[D].北京:北京林业大学, 2012.
    [17]
    李乔洋.基于碳减排分析的我国城镇污泥处置现状及发展趋势研究[D].哈尔滨:哈尔滨工业大学, 2020.
    [18]
    杨世琪.城镇污水处理系统碳核算方法与模型研究[D].重庆:重庆大学, 2013.
    [19]
    杨淦翔, 万莉, 王航, 等.污水处理厂能耗分析及节能降耗的措施与应用[J].资源节约与环保, 2021(10):12-14.
    [20]
    CAKIR F Y, STENSTROM M K.Greenhouse gas production:a comparison between aerobic and anaerobic wastewater treatment technology[J].Water Res, 2005, 39(17):4197-4203.
    [21]
    张辰, 陈嫣, 谭学军, 等.城市污水系统温室气体排放与对策研究[J].给水排水, 2010, 46(9):29-33.
    [22]
    SOLOMON S.Climate change 2007:the physical science basis[M].Cambridge:Cambridge University Press, 2007.
    [23]
    齐香汝, 熊焱, 金文杰, 等.国内城镇污水处理能耗计算方法[J].辽宁科技大学学报, 2015, 38(2):155-160.
    [24]
    孙越.生活垃圾填埋气体释放特征及收集效率研究[D].沈阳:沈阳航空航天大学, 2014.
    [25]
    郝晓地, 涂明, 蔡正清, 等.污水处理低碳运行策略与技术导向[J].中国给水排水, 2010, 26(24):1-6.
    [26]
    张秀清.环境规制与碳排放量的实证分析[J].商, 2015(25):90-91.
    [27]
    KAYA Y.Impact of Carbon Dioxide Emission Control on GNP Growth:Interpretation of Proposed Scenarios[R].Paris:IPCC Energy and Industry Subgroup, 1989.
    [28]
    牟宇峰.产业转型背景下就业人口与产业发展关系研究综述[J].人口与经济, 2016(3):103-114.
    [29]
    ANG B W.The LMDI approach to decomposition analysis:a practical guide[J].Energ Policy, 2005, 33(7):867-871.
    [30]
    江苏省生态环境厅.江苏省生态环境状况公报(2001-2020年)[R].南京:江苏省生态环境厅, 2023.
    [31]
    苏州市生态环境局.苏州市环境状况公报(2009-2020年)[R].苏州:苏州市生态环境局, 2023.
    [32]
    苏州市统计局.苏州统计年鉴(2002-2021年)[M].北京:中国统计出版社, 2023.
    [33]
    CHEN H, YE J, ZHOU Y, et al.Environmental pollution;new findings from Shanghai academy of environmental sciences describe advances in environmental pollution (variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers:an assessment of the role of dissolved organic matter components and microbiota[J].Environmental Pollution, 2020, 263:114-489.
    [34]
    中华人民共和国生态环境部.排放源统计调查产排污核算方法和系数手册[R].北京:中华人民共和国生态环境部, 2021.
    [35]
    周乙新, 李激, 王燕, 等.城镇污水处理厂低浓度进水原因分析及提升措施[J].环境工程, 2021, 39(12):25-30.
    [36]
    王笏勇, 黄荣敏, 骆旭佳, 等.排污管网高水位运行与污水厂进水水质问题研究[C]//中国环境科学学会2021年科学技术年会, 天津, 2021.
    [37]
    戴永康, 罗锋, 温巧贤.东莞市城镇污水处理提质增效潜力分析[J].中国给水排水, 2020, 36(4):1-5.
    [38]
    卢贯能.浅淡城镇污水处理厂进水COD浓度偏低的原因[J].资源节约与环保, 2014(6):144.
    [39]
    林前程.污水处理厂污泥产生、处置、利用状况分析[J].科技创新导报, 2010(7):112-113.
    [40]
    侯爱敏, 饶郁聪.苏州高端服务业提升对策研究[J].苏州科技大学学报(工程技术版), 2022, 35(2):67-74.
    [41]
    苏州市统计局.苏州市第七次全国人口普查公报[R].苏州:苏州市统计局, 2021.
    [42]
    王晓丽.基于"IPAT"等式的城市生活污水驱动因素研究[J].生态经济, 2012(2):146-149.
    [43]
    卢泉, 文虎.我国省域居民消费结构变化对环境污染的影响[J].当代经济, 2010(19):85-87.
    [44]
    蔡博峰, 吕晨, 董金池, 等.重点行业/领域碳达峰路径研究方法[J].环境科学研究, 2022, 35(2):320-328.
    [45]
    刘城宇, 韩峰.生产性服务业集聚有助于降低碳排放吗?[J].南京财经大学学报, 2017(1):91-101.
    [46]
    陈小卉, 钟睿.江苏都市圈治理:由概念到政策[J].人类居住, 2019(2):54-57.
  • Relative Articles

    [1]YUE Liangchen, YU Miao, CHENG Jun, LIU Keliang, HUA Junjie, GUO Hao. INFLUENCE OF LIPID CONTENT AND ELECTRIC FERMENTATION VOLTAGE ON METHANE PRODUCTION FROM FOOD WASTE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 200-207. doi: 10.13205/j.hjgc.202407022
    [2]SONG Chuxuan, TANG Wenying, LUO Shuangxue, KUANG Ge, ZHANG Wei, ZHOU Lean, GAO Yang, YUAN Yufei, SUN Shiquan. PILOT STUDY ON THE SYNERGISTIC AEROBIC COMPOSTING OF BLACK-ODOR WATER DREDGING SEDIMENT COUPLED WITH BIOMASS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 138-146. doi: 10.13205/j.hjgc.202403017
    [3]RUAN Min, WU Xikai, YANG Zhaohui, HUANG Jing, HUANG Zhongliang, LI Hui, WU Zijian, ZHANG Xuan, QIN Xiaoli, ZHANG Yanru. EFFECTS OF TEMPERATURE ON ABUNDANCE AND POTENTIAL HOST OF ARGs DURING SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 75-83. doi: 10.13205/j.hjgc.202305011
    [4]FAN Hongyong, ZHANG Wenxuan, WANG Huawei, SUN Yingjie, ZHANG Jingjing. RESEARCH PROGRESS OF PHYSICOCHEMICAL DEODORIZATION TECHNOLOGIES AND THEIR MECHANISMS IN AEROBIC COMPOSTING OF ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 270-276,285. doi: 10.13205/j.hjgc.202308034
    [5]XUE Zitao, CHU Xuefei, XING Libo, SUN Xiaojie, XING Meiyan. PYROLYSIS CHARACTERISTICS AND MATERIAL TRANSFORMATION CHARACTERISTICS OF CAMPUS ORGANIC WASTE TREATED BY VERMICOMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 82-91. doi: 10.13205/j.hjgc.202306012
    [6]LI Zhanglongxiang, TANG Yanfei, DAI Xiaohu. EFFECT OF HYPERTHERMOPHILIC PRETREATMENT ON COMPOSTING MATURATION AND BACTERIAL COMMUNITY STRUCTURE OF PUTRESCIBLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 124-131,186. doi: 10.13205/j.hjgc.202306017
    [7]ZHANG Lanxia, DU Wei, WANG Yan, XU Zhicheng, YUAN Jing, QI Chuanren, LI Jungang, LUO Wenhai, LI Yangyang, HE Wei, LI Guoxue. MATURITY AND ODOR GAS EMISSIONS DURING CO-COMPOSTING OF KITCHEN WASTE AND AGRICULTURAL AND FORESTRY WASTES WITH DIFFERENT CARBON SOURCES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 105-112,119. doi: 10.13205/j.hjgc.202211015
    [8]CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015
    [9]LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011
    [10]HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014
    [11]XIONG Ying, BAI Dong-rui, ZHANG Tao, LIU Yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, YANG Ting, JIN Jun, ZHOU Ping, GUO Fang. FEASIBILITY INVESTIGATION ON AEROBIC COMPOSTING OF MUNICIPAL SLUDGE SUPPLEMENTED WITH LESS PROPORTION OF GREEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 153-160. doi: 10.13205/j.hjgc.202103022
    [12]XU Yu-lu, QIAO Zi-ru, CHU Si-qin, SU Ying-long, XIE Bing. RESEARCH PROGRESS ON OCCURRENCE AND CONTROL OF EMERGING POLLUTANTS IN PROCESS OF SLUDGE RECYCLING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 146-153. doi: 10.13205/j.hjgc.202109021
    [13]LOU Di-ming, ZHANG Jiu-yang, TAN Pi-qiang, HU Zhi-yuan. TEST AND ANALYSIS ON FUELING EMISSION OF B10 KITCHEN WASTE GREASE BIODIESEL FOR SHIP[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 86-90,76. doi: 10.13205/j.hjgc.202002012
    [16]Hu Hao, Wang Fan, Liu Li, He Wenzhi, Li Guangming. STUDY ON EXTRACTION PROCESS OF LIPID IN SOLID-PHASE OF KITCHEN GARBAGE BY MICROWAVE HYDRO-HEATING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 118-121. doi: 10.13205/j.hjgc.201505025
  • Cited by

    Periodical cited type(5)

    1. 金菊良,李蔓,周戎星,张诗懿,白夏,崔毅. 减法集对势法在河流生态健康评价与诊断中的应用. 水资源保护. 2022(01): 198-204 .
    2. 臧朋. 水质污染治理项目中的隐性成本分析与研究. 环境科学与管理. 2022(01): 11-15 .
    3. 姜巽. 基于栖息地质量指数的大凌河水生态环境状况研究. 水土保持应用技术. 2022(02): 3-5 .
    4. 姜青峰,刘健. 基于集对分析联系数模型的矿井火灾安全评价. 煤矿安全. 2022(05): 182-187 .
    5. 金菊良,周戎星,崔毅,陈梦璐. 结构水资源学概论. 华北水利水电大学学报(自然科学版). 2021(03): 7-19 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.6 %FULLTEXT: 14.6 %META: 83.1 %META: 83.1 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 32.3 %其他: 32.3 %上海: 0.8 %上海: 0.8 %北京: 7.7 %北京: 7.7 %南京: 0.8 %南京: 0.8 %台州: 3.1 %台州: 3.1 %合肥: 0.8 %合肥: 0.8 %嘉兴: 0.8 %嘉兴: 0.8 %天津: 0.8 %天津: 0.8 %常州: 0.8 %常州: 0.8 %张家口: 1.5 %张家口: 1.5 %成都: 1.5 %成都: 1.5 %扬州: 0.8 %扬州: 0.8 %昆明: 0.8 %昆明: 0.8 %杭州: 3.1 %杭州: 3.1 %泰安: 2.3 %泰安: 2.3 %湖州: 1.5 %湖州: 1.5 %漯河: 2.3 %漯河: 2.3 %石家庄: 0.8 %石家庄: 0.8 %秦皇岛: 0.8 %秦皇岛: 0.8 %芒廷维尤: 27.7 %芒廷维尤: 27.7 %芝加哥: 0.8 %芝加哥: 0.8 %衡水: 0.8 %衡水: 0.8 %衢州: 0.8 %衢州: 0.8 %运城: 3.1 %运城: 3.1 %郑州: 0.8 %郑州: 0.8 %重庆: 2.3 %重庆: 2.3 %阜阳: 0.8 %阜阳: 0.8 %其他上海北京南京台州合肥嘉兴天津常州张家口成都扬州昆明杭州泰安湖州漯河石家庄秦皇岛芒廷维尤芝加哥衡水衢州运城郑州重庆阜阳

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(11) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return