Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
Citation: LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024

RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS

doi: 10.13205/j.hjgc.202310024
  • Received Date: 2023-07-25
    Available Online: 2023-12-26
  • Increasing urban energy consumption and carbon dioxide emissions pose serious challenges to regional emission reduction policies. Based on the remote sensing simulation of night lights from 2004 to 2020, this study inverted the carbon emission data of 29 cities in North China, and used spatial autocorrelation and spatial Markov chain to analyze the spatial distribution characteristics of carbon emissions from the perspective of cities in North China from the dynamic and static aspects, to explore the agglomeration effect between cities; at the same time, in order to further clarify the factors affecting carbon emissions, based on the weighted regression model of time, space and geography, this study quantitatively identifies the relevant factors affecting urban carbon emissions from the aspects of the economy, society, environment and policy, and discusses the spatial heterogeneity can provide a theoretical basis for differentiated emission reduction. The results shows that the growth rate of per capita carbon emissions in North China is gradually decreasing, and there are obvious clustering characteristics between those cities. The influence of various factors on carbon emissions of cities in North China in different periods shows temporal and spatial heterogeneity. The level of economic development and industrial structure are strong driving forces to promote carbon emissions. Government policies have the most obvious inhibitory effect on carbon emissions. The urbanization rate and climate have the characteristics of first promoting and then inhibiting the production of carbon emissions.
  • loading
  • [1]
    ZHOU Z H, CAO L J, ZHAO K K, et al.Spatio-temporal effects of multi-dimensional urbanization on carbon emission efficiency analysis based on panel data of 283 cities in China[J].International Journal of Environmental Research and Public Health, 2021, 18(23):12712.
    [2]
    SHAHBAZ M, LOGANATHAN N, MUZAFFAR A T, et al.How urbanization affects CO2 emissions in Malaysia The application of STIRPAT model[J].Renewable and Sustainable Energy Reviews, 2016, 57:83-93.
    [3]
    潘思羽, 张美玲.基于BP神经网络的甘肃省二氧化碳排放预测及影响因素研究[J].环境工程, 2023, 41(7):61-68

    , 85.
    [4]
    朱海, 王立国, 贺焱, 等.多情景下中国省域旅游业碳达峰的时空特征研究[J].干旱区资源与环境, 2023, 37(1):169-176.
    [5]
    苏泳娴, 陈修治, 叶玉瑶, 等.基于夜间灯光数据的中国能源消费碳排放特征及机理[J].地理学报, 2013, 68(11):1513-1526.
    [6]
    LIU S R, SHEN J W, LIU G F, et al.Exploring the effect of urban spatial development pattern on carbon dioxide emissions in China:a socioeconomic density distribution approach based on remotely sensed nighttime light data[J].Computers, Environment and Urban Systems, 2022, 96:101847.
    [7]
    KARMELLOS M, KOPIDOU D, DIAKOULAKI D.A decomposition analysis of the driving factors of CO2 (carbon dioxide) emissions from the power sector in the European Union countries[J].Energy, 2016, 94:680-692.
    [8]
    马景富.辽宁省碳排放的环境库兹涅茨曲线实证研究[J].节能, 2021, 40(5):58-62.
    [9]
    程叶青, 王哲野, 张守志, 等.中国能源消费碳排放强度及其影响因素的空间计量[J].地理学报, 2013, 68(10):1418-1431.
    [10]
    SHI K F, CHEN Y, YU B L, et al.Modeling spatiote-mporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis[J].Applied Energy, 2016, 168:523-533.
    [11]
    杨迪, 杨旭, 吴相利, 等.东北地区能源消费碳排放时空演变特征及其驱动机制[J].环境科学学报, 2018, 38(11):4554-4565.
    [12]
    曹子阳, 吴志峰, 匡耀求, 等.DMSP/OLS夜间灯光影像中国区域的校正及应用[J].地球信息科学学报, 2015, 17(9):1092-1102.
    [13]
    SUN Y, ZHENG S, WU Y Z, et al.Spatiotemporal variations of city-level carbon emissions in China during 2000-2017 using nighttime light data[J].Remote Sensing, 2020, 12(18):2916.
    [14]
    季涛.技术进步对中国碳排放的影响效应研究[D].兰州:兰州大学, 2022.
    [15]
    ZHAO J C, JI G X, YUE Y L, et al.Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets[J].Applied Energy, 2019, 235:612-624.
    [16]
    王少剑, 苏泳娴, 赵亚博.中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J].地理学报, 2018, 73(3):414-428.
    [17]
    韦彦汀, 李思佳, 张华.成渝城市群的碳排放时空演变特征及其影响因素分析[J].中国环境科学, 2022, 21(2):1-10.
    [18]
    杜海波, 魏伟, 张学渊, 等.黄河流域能源消费碳排放时空格局演变及影响因素:基于DMSP/OLS与NPP/VIIRS夜间灯光数据[J].地理研究, 2021, 40(7):2051-2065.
    [19]
    HUANG B, WU B, BARRY M.Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J].International Journal of Geographical Information Science, 2010, 24(3):383-401.
    [20]
    边小萌.绿色技术能力对区域碳排放的影响[D].北京:北京理工大学, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return