Citation: | LUO Wenrong, CHE Huizheng, MIAO Shiguang, GUI Ke, ZHAO Hengheng. RESEARCH PROGRESS OF URBAN CARBON FLUX MONITORING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 230-244. doi: 10.13205/j.hjgc.202310027 |
[1] |
MARCOTULLIO P J, SARZYNSKI A, ALBRECHT J, et al. The geography of global urban greenhouse gas emissions:an exploratory analysis[J]. Climatic Change, 2013, 121(4):621-634.
|
[2] |
IPCC. Climate change 2022:mitigation of climate change[M/OL]. 2022[2022-10-31]. https://www.ipcc.ch/report/sixth-assessment-report working-group-3/.
|
[3] |
VELASCO E, ROTH M. Cities as net sources of CO2:review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique[J]. Geography Compass, 2010, 4(9):1238-1259.
|
[4] |
SONG J Y, WANG Z H, WANG C H. Biospheric and anthropogenic contributors to atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona[J]. Journal of Geophysical Research Atmospheres, 2017, 122(6):3317-3329.
|
[5] |
CHEN G W, LAM C K C, WANG K, et al. Effects of urban geometry on thermal environment in 2D street canyons:a scaled experimental study[J]. Building and Environment, 2021, 198(7):107916.
|
[6] |
何文, 刘辉志, 冯健武. 城市近地层湍流通量及CO2通量变化特征[J]. 气候与环境研究, 2010, 15(1):21-33.
|
[7] |
MORIWAKI R, KANDA M. Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area[J]. Boundary-Layer Meteorology, 2006, 120(1):163-179.
|
[8] |
SCHMUTZ M, VOGT R. Flux similarity and turbulent transport of momentum, heat and carbon dioxide in the urban boundary layer[J]. Boundary-Layer Meteorology, 2019, 172(1):45-65.
|
[9] |
WANG L, LI D, GAO Z, et al. Turbulent transport of momentum and scalars above an urban canopy[J]. Boundary-Layer Meteorology, 2014, 150(3):485-511.
|
[10] |
BRIBER B M, HUTYRA L R, DUNN A L, et al. Variations in atmospheric CO2 mixing ratios across a Boston, MA urban to rural gradient[J]. Land, 2013, 2(3):304-327.
|
[11] |
GATELY C K, HUTYRA L R, WING I S, et al. A bottom up approach to on-road CO2 emissions estimates:improved spatial accuracy and applications for regional planning[J]. Environmental Science and Technology, 2013, 47(5):2423-2430.
|
[12] |
刘毅, 王婧, 车轲, 等. 温室气体的卫星遥感:进展与趋势[J]. 遥感学报, 2021, 25(1):53-64.
|
[13] |
LIETZKE B, VOGT R. Variability of CO2 concentrations and fluxes in and above an urban street canyon[J]. Atmospheric Environmentatmos, 2013, 74(8):60-72.
|
[14] |
赵荣钦, 黄贤金. 城市系统碳循环:特征、机理与理论框架[J]. 生态学报, 2013, 33(2):358-366.
|
[15] |
MUÑIZ I, GARCIA-LÓPEZ M A. Urban form and spatial structure as determinants of the ecological footprint of commuting[J]. Transportation research, Part D. Transport and Environment, 2019, 67(2):334-350.
|
[16] |
HONG S F, HUI E C M, LIN Y Y. Relationship between urban spatial structure and carbon emissions:a literature review[J]. Ecological Indicators, 2022, 144(12):109456.
|
[17] |
LI C, ZHANG L, GU Q Y, et al. Spatio-temporal differentiation characteristics and urbanization factors of urban household carbon emissions in China[J]. International Journal of Environmental Research and Public Health, 2022, 19(8):4451.
|
[18] |
YU X, WU Z, ZHENG H, et al. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China[J]. Journal of Environmental Management, 2020, 260(4):110061.
|
[19] |
OU J P, LIU X P, LI X, et al. Quantifying the relationship between urban forms and carbon emissions using panel data analysis[J]. Landscape Ecology, 2013, 28(10):1889-1907.
|
[20] |
CREUTZIG F, BAIOCCHI G, BIERKANDT R, et al. Global typology of urban energy use and potentials for an urbanization mitigation wedge[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(20):6283-6288.
|
[21] |
UNDERWOOD A, FREMSTAD A. Does sharing backfire? A decomposition of household and urban economies in CO2 emissions[J]. Energy Policy, 2018, 123(12):404-413.
|
[22] |
WAYGOOD E O D, SUN Y L, SUSILO Y O. Transportation carbon dioxide emissions by built environment and family lifecycle:case study of the Osaka metropolitan area[J]. Transportation Research, Part D. Transport and Environment, 2014, 31(8):176-188.
|
[23] |
ANTEQUERA P D, PACHECO J D, DÍEZ A L, et al. Tourism, transport and climate change:the carbon footprint of international air traffic on islands[J]. Sustainability, 2021, 13(4):1795.
|
[24] |
DUFFY A. Land use planning in Ireland:A life cycle energy analysis of recent residential development in the Greater Dublin Area[J]. The International Journal of Life Cycle Assessment, 2009, 14(3):268-277.
|
[25] |
HUSSAIN Z, KHAN M K, XIA Z Q. Investigating the role of green transport, environmental taxes and expenditures in mitigating the transport CO2 emissions[J]. Transportation Letters, 2023, 15(5):439-449.
|
[26] |
RAMASWAMI A, HILLMAN T, JANSON B, et al. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories[J]. Environmental Science and Technology, 2008, 42(17):6455-6461.
|
[27] |
VELASCO E, PERRUSQUIA R, JIMÉNEZ E, et al. Sources and sinks of carbon dioxide in a neighborhood of Mexico City[J]. Atmospheric Environment, 2014, 97(11):226-238.
|
[28] |
LIETZKE B, VOGT R, FEIGENWINTER C, et al. On the controlling factors for the variability of carbon dioxide flux in a heterogeneous urban environment[J]. International of Journal Climatology, 2015, 35(13):3921-3941.
|
[29] |
WARD H C, KOTTHAUS S, GRIMMOND C S B, et al. Effects of urban density on carbon dioxide exchanges:observations of dense urban, suburban and wood-land areas of Southern England[J]. Environmental Pollution, 2015, 198(3):186-200.
|
[30] |
HARDIMAN B S, WANG J A, HUTYRA L R, et al. Accounting for urban biogenic fluxes in regional carbon budgets[J]. Science of the Total Environment, 2017, 592(8):366-372.
|
[31] |
STAGAKIS S, CHRYSOULAKIS N, SPYRIDAKIS N, et al. Eddy Covariance measurements and source partitioning of CO2 emissions in an urban environment:application for Heraklion, Greece[J]. Atmospheric Environment, 2019, 201(3):278-292.
|
[32] |
WIDORY D, JAVOY M. The carbon isotope composition of atmospheric CO2 in Paris[J]. Earth and Planetary Science Letters, 2003, 215(1/2):289-298.
|
[33] |
龙惟定, 梁浩. 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51(4):1-17.
|
[34] |
SHARIFI A. Co-benefits and synergies between urban climate change mitigation and adaptation measures:a literature review[J]. Science of the Total Environment, 2021, 750(1):141642.
|
[35] |
SUN C L, ZHANG Y L, MA W W, et al. The impacts of urban form on carbon emissions:a comprehensive review[J]. Land, 2022, 11(9):1430.
|
[36] |
BJÖRKEGREN A, GRIMMOND C S B. Net carbon dioxide emissions from central London[J]. Urban Climate, 2018, 23(3):131-158.
|
[37] |
LIN D T, ZHANG L Y, CHEN C, et al. Understanding driving patterns of carbon emissions from the transport sector in China:evidence from an analysis of panel models[J]. Clean Technologies and Environmental Policy, 2019, 21(6):1307-1322.
|
[38] |
沈岩, 武彤冉, 闫静, 等. 基于COPERT模型北京市机动车大气污染物和二氧化碳排放研究[J]. 环境工程技术学报, 2021, 11(6):1075-1082.
|
[39] |
田佩宁, 毛保华, 童瑞咏, 等. 我国交通运输行业及不同运输方式的碳排放水平和强度分析[J]. 气候变化研究进展, 2023, 19(3):347-356.
|
[40] |
胡荣, 王德芸, 冯慧琳, 等. 碳达峰视角下的机场航空器碳排放预测[J]. 交通运输系统工程与信息, 2021, 21(6):257-263.
|
[41] |
RACITI S, HUTYRA L, RAO P, et al. Inconsistent definitions of "urban" result in different conclusions about the size of urban carbon and nitrogen stocks[J]. Ecological Applications, 2012, 22(3):1015-1033.
|
[42] |
HUTYRA L R, YOON B, HEPINSTALL-CYMERMAN J, et al. Carbon consequences of land cover change and expansion of urban lands:a case study in the Seattle metropolitan region[J]. Landscape and Urban Planning, 2011, 103(1):83-93.
|
[43] |
HUTYRA L R, YOON B, ALBERTI M. Terrestrial carbon stocks across a gradient of urbanization:a study of the Seattle, WA region[J]. Global Change Biology, 2011, 17(2):783-797.
|
[44] |
COUTTS A M, BERINGER J, TAPPER N J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia[J]. Atmospheric Environment, 2007, 41(1):51-62.
|
[45] |
RICHARDSON I, THOMSON M, INFIELD D, et al. Domestic electricity use:a high-resolution energy demand model[J]. Energy and Buildings, 2010, 42(10):1878-1887.
|
[46] |
IMHOFF M A, BOUNOUA L, DEFRIES R, et al. The consequences of urban land transformation on net primary productivity in the United States[J]. Remote Sensing of Environment, 2004, 89(4):434-443.
|
[47] |
ZHANG X Y, FRIEDL M A, SCHAAF C B, et al. Climate controls on vegetation phenological patterns in northern mid and high latitudes inferred from MODIS data[J]. Global Change Biology, 2004, 10(7):1133-1145.
|
[48] |
LUO Z K, SUN O J, GE Q S, et al. Phenological responses of plants to climate change in an urban environment[J]. Ecological Research, 2007, 22(3):507-514.
|
[49] |
BELLUCCO V, MARRAS S, GRIMMOND C S B, et al. Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters[J]. Agricultural and Forest Meteorology, 2017, 236(4):113-122.
|
[50] |
王介民, 王维真, 奥银焕. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8):791-797.
|
[51] |
GATELY C K, HUTYRA L R, PETERSON S, et al. Urban emissions hotspots:quantifying vehicle congestion and air pollution using mobile phone GPS data[J]. Environmental Pollution, 2017, 229(10):496-504.
|
[52] |
JÄRVI L, HAVU M, WARD H C, et al. Spatial modeling of local-scale biogenic and anthropogenic carbon dioxide emissions in Helsinki[J]. Journal of Geophysical Research Atmospheres. 2019, 124(15):8363-8384.
|
[53] |
CRAWFORD B, CHRISTEN A. Spatial source attribution of measured urban eddy covariance CO2 fluxes[J]. Theoretical and Applied Climatology, 2015, 119(4):733-755.
|
[54] |
MORIWAKI R, KANDA M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area[J]. Journal of Applied Meteorology and Climatology, 2004, 43(11):1700-1710.
|
[55] |
LIU R, ZHAI X B, CHUA V. Carbon emission calculation of thermal power plant:an overview[J]. Advanced Materials Research, 2014, 962-965(6):1368-1372.
|
[56] |
GRIMMOND C S B. Progress in measuring and observing the urban atmosphere[J]. Theoretical and Applied Climatology, 2006, 84(6):3-22.
|
[57] |
BALDOCCHI D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future[J]. Global Change Biology, 2003, 9(4):479-492.
|
[58] |
刘阳. 北京城市下垫面湍流输送及水汽、CO2通量交换特征的研究[D]. 北京:中国科学院大学, 2018.
|
[59] |
GRIMMOND C S B, KING T S, CROPLEY F D, et al. Local-scale fluxes of carbon dioxide in urban environments:methodological challenges and results from Chicago[J]. Environmental Pollution, 2002, 116(Suppl.1):S243-S254.
|
[60] |
GRIMMOND C S B, SALMOND J A, OKE T R, et al. Flux and turbulence measurements at a densely built-up site in Marseille:heat, mass (water and carbon dioxide), and momentum[J]. Journal of Geophysical Research, 2004, 109(D24):24101-24120.
|
[61] |
PAWLAK W, FORTUNIAK K, SIEDLECKI M. Carbon dioxide flux in the centre of [XC0.TIF;%55%55, JZ], Poland:analysis of a 2-year eddy covariance measurement data set[J]. International Journal of Climatology, 2011, 31(2):232-243.
|
[62] |
JÄRVI L, NORDBO A, JUNNINEN H, et al. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006-2010[J]. Atmospheric Chemistry and Physics, 2012, 12(18):8475-8489.
|
[63] |
GIOLI B, TOSCANO P, LUGATO E, et al. Methane and carbon dioxide fluxes and source partitioning in urban areas:the case study of Florence, Italy[J]. Environmental Pollution, 2012, 164(5):125-131.
|
[64] |
HELFTER C, TREMPER A H, HALIOS C H, et al. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK[J]. Atmospheric Chemistry and Physics, 2016, 16(16):10543-10557.
|
[65] |
支星, 敖翔宇. 上海中心城区二氧化碳通量特征分析[J]. 气象与环境学报, 2020, 36(3):72-79.
|
[66] |
VELASCO E, PRESSLEY S, ALLWINE E, et al. Measurements of CO2 fluxes from the Mexico City urban landscape[J]. Atmospheric Environment, 2005, 39(38):7433-7446.
|
[67] |
AO X Y, GRIMMOND C S B, CHANG Y Y, et al. Heat, water and carbon exchanges in the tall megacity of Shanghai:challenges and results[J]. International Journal of Climatology:A Journal of the Royal Meteorological Society, 2016, 36(14):4608-4624.
|
[68] |
LIU H Z, FENG J W, JÄRVI L, et al. Four-year (2006-2009) eddy covariance measurements of CO2 flux over an urban area in Beijing[J]. Atmospheric Chemistry and Physics, 2012, 12(17):7881-7892.
|
[69] |
HELFTER C, FAMULARI D, PHILLIPS G J, et al. Controls of carbon dioxide concentrations and fluxes above central London[J]. Atmospheric Chemistry and Physics, 2011, 11(5):1913-1928.
|
[70] |
SOEGAARD H, MØLLER-JENSEN L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements[J]. Remote Sensing of Environment, 2003, 87(2/3):283-294.
|
[71] |
BERGERON O, STRACHAN I. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city[J]. Atmospheric Environment, 2011, 45(8):1564-1573.
|
[72] |
HIRANO T, SUGAWARA H, MURAYAMA S, et al. Diurnal variation of CO2 flux in an urban area of Tokyo[J]. Scientific Online Letters on the Atmosphere, 2015, 11(7):100-103.
|
[73] |
PARK M S, JOO S J, PARK S U. Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea[J]. Advances in Atmospheric Sciences, 2014, 31(7):1101-1112.
|
[74] |
BURRI S, FREY C, PARLOW E, et al. CO2 fuxes and concentrations over an urban surface in Cairo, Egypt[C]//7th International Conference on Urban Climate, Yokohama, 2009.
|
[75] |
SONG T, WANG Y S. Carbon dioxide fluxes from an urban area in Beijing[J]. Atmospheric Research, 2012, 106(3):139-149.
|
[76] |
CRAWFORD B, GRIMMOND C S B, CHRISTEN A. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area[J]. Atmospheric Environment, 2011, 45(4):896-905.
|
[77] |
LIU Y, LIU H Z, DU Q, et al. Multi-level CO2 fluxes over Beijing megacity with the eddy covariance method[J]. Atmospheric and Oceanic Science Letters, 2021, 14(6):100079.
|
[78] |
刘郁珏. 北京325米气象塔上CO2梯度观测资料的分析研究[D]. 北京:中国科学院大学, 2015.
|
[79] |
LIU Z, LIU Z R, SONG T, et al. Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China[J]. Environmental Pollution, 2020, 266(3):115014.
|
[80] |
窦军霞, 刘伟东, 苗世光, 等. 北京城郊地区二氧化碳通量特征[J]. 生态学报, 2015, 35(15):5228-5238.
|
[81] |
STAGAKIS S, FEIGENWINTER C, VOGT R, et al. A high-resolution monitoring approach of urban CO2 fluxes. Part 2-surface flux optimisation using eddy covariance observations[J]. Science of The Total Environment, 2023, 903(8):166035.
|
[82] |
KORDOWSKI K, KUTTLER W. Carbon dioxide fluxes over an urban park area[J]. Atmospheric Environment, 2010, 44(23):2722-2730.
|
[83] |
SCHMIDT A, WRZESINSKY T, KLEMM O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks[J]. Boundary-Layer Meteorology. 2008, 126(3):389-413.
|
[84] |
NEMITZ E, HARGREAVES K J, MCDONALD A G, et al. Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale[J]. Environmental Science and Technology, 2002, 36(14):3139-3146.
|
[85] |
CHRISTEN A, COOPS N C, CRAWFORD B R, et al. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements[J]. Atmospheric Environmentatmos, 2011, 45(33):6057-6069.
|
[86] |
PÉREZ-RUIZ E R, VIVONI E R, TEMPLETON N P. Urban land cover type determines the sensitivity of carbon dioxide fluxes to precipitation in Phoenix, Arizona[J]. PloS One, 2020, 15(2):e0228537.
|
[87] |
JASEK-KAMIŃSKA A, ZIMNOCH M, WACHNIEW P, et al. Urban CO2 budget:spatial and seasonal variability of CO2 emissions in Krakow, Poland[J]. Atmosphere, 2020, 11(6):629.
|
[88] |
VELASCO E, PRESSLEY S, GRIVICKE R, et al. Eddy covariance flux measurements of pollutant gases in urban Mexico City[J]. Atmospheric Chemistry and Physics, 2009, 9(19):7325-7342.
|
[89] |
UEYAMA M, TAKANO T. A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan[J]. Environmental Pollution, 2022, 304(7):119210.
|
[90] |
VELASCO E, ROTH M, TAN S H, et al. The role of vegetation in the CO2 flux from a tropical urban neighbourhood[J]. Atmospheric Chemistry and Physics, 2013, 13(20):10185-10202.
|
[91] |
PARK C, JEONG S, PARK M S, et al. Spatiotemporal variations in urban CO2 flux with landuse types in Seoul[J]. Carbon Balance and Management, 2022, 17(1):1-14.
|
[92] |
RANA G, MARTINELLI N, FAMULARI D, et al. Representativeness of carbon dioxide fluxes measured by eddy covariance over a Mediterranean urban district with equipment setup restrictions[J]. Atmosphere, 2021, 12(2):197.
|
[93] |
GIOLI B, MIGLIETTA F, MARTINO B D, et al. Comparison between tower and aircraft-based eddy covariance fluxes in five European regions[J]. Agricultural and Forest Meteorology, 2004, 127(1/2):1-16.
|
[94] |
DESJARDINS R L, WORTH D E, MACPHERSON J I, et al. Flux measurements by the NRC Twin Otter atmospheric research aircraft:1987-2011[J]. Advances in Science and Research, 2016, 13(3):43-49.
|
[95] |
VELLINGA O S, GIOLI B, ELBERS J A, et al. Regional carbon dioxide and energy fluxes from airborne observations using flightpath segmentation based on landscape characteristics[J]. Biogeosciences, 2010, 7(4):1307-1321.
|
[96] |
WOLFE G M, KAWA S R, HANISCO T F, et al. The NASA carbon airborne flux experiment (CARAFE):instrumentation and methodology[J]. Atmospheric Measurement Techniques, 2018, 11(3):1757-1776.
|
[97] |
FONT A, MORGUI J A, GRIMMOND S, et al. Aircraft observations of the urban CO2 dome in London and calculated daytime CO2 fluxes at the urban-regional scale[J]. Geophysical Research Abstracts, 2013, 15(4):11498.
|
[98] |
ELSTON J, ARGROW B, STACHURA M, et al. Overview of small fixed-wing unmanned aircraft for meteorological sampling[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(1):97-115.
|
[99] |
ANDERSON K, GASTON K J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Frontiers in Ecology and the Environment, 2013, 11(3):138-146.
|
[100] |
REINEMAN B D, LENAIN L, STATOM N M, et al. Development and testing of instrumentation for UAV-Based flux measurements within terrestrial and marine atmospheric boundary layers[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7):1295-1319.
|
[101] |
REUDER J, BÅSERUD L, JONASSEN M O, et al. Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(6):2675-2688.
|
[102] |
MAHRT L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2):416-429.
|
[103] |
WOLFF S, EHRET G, KIEMLE C, et al. Determination of the emission rates of CO2 point sources with airborne lidar[J]. Atmospheric Measurement Techniques, 2021, 14(4):2717-2736.
|
[104] |
CREVOISIER C, CHÉDIN A, MATSUEDA H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmospheric Chemistry and Physics, 2009, 9(14):4797-4810.
|
[105] |
BURROWS J P, HÖLZLE E, GOEDE A P, et al. Scanning imaging absorption spectrometer for atmospheric chartography[J]. Acta Astronautica, 1995, 35(7):445-451.
|
[106] |
BOVENSMANN H, BURROWS J P, Buchwitz M, et al. SCIAMACHY:mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2):127-150.
|
[107] |
RUSLI S P, HASEKAMP O, BRUGH J A D, et al. Anthropogenic CO2 monitoring satellite mission:the need for multi-angle polarimetric observations[J]. Atmospheric Measurement Techniques, 2021, 14(2):1167-1190.
|
[108] |
KUZE A, SUTO H, NAKAJIMA M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring[J]. Applied Optics, 2009, 48(35):6716-6733.
|
[109] |
BOESCH H, BAKER D, CONNOR B, et al. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission[J]. Remote Sensing, 2011, 3(2):270-304.
|
[110] |
TAYLOR T E, ELDERING A, MERRELLI A, et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals[J]. Remote Sensing of Environment, 2020, 251(12):112032.
|
[111] |
YANG D X, LIU Y, CAI Z N, et al. First global carbon dioxide maps produced from Tansat measurements[J]. Advances in Atmospheric Sciences, 2018, 35(6):621-623.
|
[112] |
YANG D, BOESCH H, LIU Y, et al. Toward high precision XCO2 retrievals from TanSat observations:retrieval improvement and validation against TCCON measurements[J]. Journal of Geophysical Research, 2020, 125(22):e2020JD032794.
|
[113] |
YANG D X, LIU Y, BOESCH H, et al. A new TanSat XCO2 global product towards climate studies[J]. Advances in Atmospheric Sciences, 2021, 38(1):8-11.
|
[114] |
SHI H L, LI Z W, YE H H, et al. First level 1 product results of the greenhouse gas monitoring instrument on the GaoFen-5 satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):899-914.
|
[115] |
叶函函, 王先华, 吴时超, 等. 高分五号卫星GMI大气CO2反演方法[J]. 大气与环境光学学报, 2021, 16(3):231-238.
|
[116] |
蔡博峰, 朱松丽, 于胜民, 等.《IPCC2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8):1-11.
|
[117] |
GURNEY K R, LAW R M, DENNING A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J]. Nature, 2002, 415(6872):626-630.
|
[118] |
JIANG F, WANG H M, CHEN J M, et al. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China[J]. Biogeosciences, 2013, 10(8):5311-5324.
|
[119] |
PETERS W, JACOBSON A R, SWEENEY C, et al. An atmospheric perspective on North American carbon dioxide exchange:carbontracker[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48):18925-18930.
|
[120] |
PETERS W, KROL M C, WERF G R V D, et al. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations[J]. Global Biogeochemical Cycles, 2010, 16(4):1317-1337.
|
[121] |
KENEA S T, OH Y S, RHEE J S, et al. Evaluation of simulated CO2 concentrations from the carbontracker-asia model using in-situ observations over East Asia for 2009-2013[J]. Advances in Atmospheric Sciences, 2019, 36(6):603-613.
|
[122] |
ZHANG H F, CHEN B Z, LAAN-LUIJK I T V D, et al. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006-2010[J]. Atmospheric Chemistry and Physics, 2014, 14(11):5807-5824.
|
[123] |
陈镜明, 居为民, 刘荣高, 等. 全球陆地碳汇的遥感和优化计算方法[M]. 北京:科学出版社, 2015.
|
[124] |
ZHANG S, ZHENG X, CHEN J M, et al. A global carbon assimilation system using a modified ensemble Kalman filter[J]. Geoscientific Model Development, 2015, 8(3):805-816.
|
[125] |
TIAN X, XIE Z, LIU Y, et al. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations[J]. Atmospheric Chemistry and Physics, 2014, 14(23):13281-13293.
|
[126] |
WANG J, JIANG F, WANG H M, et al. Constraining global terrestrial gross primary productivity in a global carbon assimilation system with OCO-2 chlorophyll fluorescence data[J]. Agricultural and Forest Meteorology, 2021, 304-305(7):108424.
|
[127] |
JIANG F, WANG H M, CHEN J M, et al. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System[J]. Atmospheric Chemistry and Physics, 2015, 21(3):1963-1985.
|
[128] |
JIANG F, JU W M, HE W, et al. A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021)[J]. Earth System Science Data, 2022, 14(7):3013-3037.
|
[129] |
CIAIS P, CRISP D, GON H D V D, et al. Towards a European operational observing system to monitor fossil:CO2 emissions:final report from the expert group[C]//European Commission, Brussels, 2015.
|
[130] |
DUREN R M, MILLER C E. Measuring the carbon emissions of megacities[J]. Nature Climate Change, 2012, 2(8):560-562.
|
[131] |
BASU S, LEHMAN S J, MILLER J B, et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24):13300-13307.
|
[132] |
GRAVEN H, FISCHER M L, LUEKER T, et al. Assessing fossil fuel CO2 emissions in California using atmospheric observations and models[J]. Environmental Research Letters, 2018, 13(6):065007.
|
[133] |
LIU J J, BOWMAN K. A method for independent validation of surface fluxes from atmospheric inversion:application to CO2[J]. Geophysical Research Letters, 2016, 43(7):3502-3508.
|
[134] |
ZHENG B, GENG G N, CIAIS P, et al. Satellite-based estimates of decline and rebound in China's CO2 emissions during COVID19 pandemic[J]. Science Advances, 2020, 6(49):2375-2548.
|
[135] |
VERHULST K R, KARION A, KIM J, et al. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project-Part 1:calibration, urban enhancements, and uncertainty estimates[J]. Atmospheric Chemistry and Physics, 2017, 17(7):8313-8341.
|
[136] |
XIONG T L, LIU Y W, YANG C, et al. Research overview of urban carbon emission measurement and future prospect for GHG monitoring network[C]//2023 the 7th International Conference on Energy and Environmental Science (ICEES 2023), Changsha, 2023.
|
[137] |
BRÉON F M, BROQUET G, PUYGRENIER V, et al. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements[J]. Atmospheric Chemistry and Physics, 2015, 15(4):1707-1724.
|
[138] |
YANG Y, ZHOU M, WANG T, et al. Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe and Xinglong in North China[J]. Atmospheric Chemistry and Physics, 2021(15):11741.
|
[139] |
HAN P F, ZENG N, WANG Y N, et al. Regional carbon monitoring for the Beijing-Tianjin-Hebei (JJJ) City Cluster[C]//European Geosciences Union (EGU), Vienna, 2018.
|